

 C-3

Class Declaration

public class BankAccount
{
 private double balance;
 private int transactions;

 public BankAccount(double initialBalance)
 {
 balance = initialBalance;
 transactions = 1;
 }

 public void deposit(double amount)
 {
 balance = balance + amount;
 transactions++;
 }
 . . .
}

Method

Instance variables

do
{
 System.out.print("Enter a positive integer: ");
 input = in.nextInt();
}
while (input <= 0);

for (double value : values)
{
 sum = sum + value;
}

An array or collection

Executed for each element

Loop body executed
at least once

Set to a new element in each iteration

Executed while
condition is true

Condition

Initialization Condition Update

Loop Statements

while (balance < TARGET)
{
 year++;
 balance = balance * (1 + rate / 100);
}

for (int i = 0; i < 10; i++)
{
 System.out.println(i);
}

Selected Operators and Their Precedence
(See Appendix B for the complete list.)

[] Array element access
++ -- ! Increment, decrement, Boolean not
* / % Multiplication, division, remainder
+ - Addition, subtraction
< <= > >= Comparisons
== != Equal, not equal
&& Boolean and
|| Boolean or
= Assignment

String Operations

String s = "Hello";
int n = s.length(); // 5
char ch = s.charAt(1); // 'e'
String t = s.substring(1, 4); // "ell"
String u = s.toUpperCase(); // "HELLO"
if (u.equals("HELLO")) ... // Use equals, not ==
for (int i = 0; i < s.length(); i++)
{
 char ch = s.charAt(i);
 Process ch
}

Mathematical Operations

Math.pow(x, y) Raising to a power xy
Math.sqrt(x) Square root x
Math.log10(x) Decimal log log10(x)
Math.abs(x) Absolute value |x|
Math.sin(x)

Math.cos(x) Sine, cosine, tangent of x (x in radians)
Math.tan(x)

Variable and Constant Declarations

int cansPerPack = 6;

final double CAN_VOLUME = 0.335;

Type Name Initial value

Parameter
type and name

Exits method and
returns result.

Return typeModi�ers

Method Declaration

public static double cubeVolume(double sideLength)
{
 double volume = sideLength * sideLength * sideLength;
 return volume;
}

Conditional Statement

if (floor >= 13)
{
 actualFloor = floor - 1;
}
else if (floor >= 0)
{
 actualFloor = floor;
}
else
{
 System.out.println("Floor negative");
}

Condition

Executed when condition is true

Second condition (optional)

Executed when
all conditions are
false (optional)

Constructor

3/e
Java Concepts

Late Objects

Cay Horstmann
San Jose State University

3/e
Java Concepts

Late Objects

PUBLISHER Laurie Rosatone
EDITORIAL DIRECTOR Don Fowley
DEVELOPMENTAL EDITOR Cindy Johnson
ASSISTANT DEVELOPMENT EDITOR Ryann Dannelly
EXECUTIVE MARKETING MANAGER Dan Sayre
SENIOR PRODUCTION EDITOR Laura Abrams
SENIOR CONTENT MANAGER Valerie Zaborski
EDITORIAL ASSISTANT Anna Pham
SENIOR DESIGNER Tom Nery
SENIOR PHOTO EDITOR Billy Ray
PRODUCTION MANAGEMENT Cindy Johnson
COVER IMAGES (tiger) © Aprison Photography/Getty Images, Inc.; (bird) ©

Nengloveyou/Shutterstock; (monkey) © Ehlers/iStockphoto;
(rhino) © irawansubingarphotography/Getty Images, Inc.

This book was set in Stempel Garamond LT Std by Publishing Services, and printed and bound by Quad/
Graphics, Versailles. The cover was printed by Quad/Graphics, Versailles.

This book is printed on acid-free paper. ∞

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live
and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon
impact, paper specifications and procurement, ethical conduct within our business and among our vendors,
and community and charitable support. For more information, please visit our website: www.wiley.com/go/
citizenship.

Copyright © 2017, 2013, 2010 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. If you have
chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk copy.
Outside of the United States, please contact your local representative.

ISBN 13: 978-1-119-32102-6

The inside back cover will contain printing identification and country of origin if omitted from this page. In
addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is correct.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

PREFACE

v

This book is an introduction to Java and computer programming that focuses on the
essentials—and on effective learning. The book is designed to serve a wide range of
student interests and abilities and is suitable for a first course in programming for
computer scientists, engineers, and students in other disciplines. No prior program-
ming experience is required, and only a modest amount of high school algebra is
needed. Here are the key features of this book:

Present fundamentals first.
The book takes a traditional route, first stressing control structures, methods, pro-
cedural decomposition, and arrays. Objects are used when appropriate in the early
chapters. Students start designing and implementing their own classes in Chapter 8.

Guidance and worked examples help students succeed.
Beginning programmers often ask “How do I start? Now what do I do?” Of course,
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence
and providing an outline for the task at hand. “Problem Solving” sections stress the
importance of design and planning. “How To” guides help students with common
programming tasks. Additional Worked Examples and Video Examples are available
online.

Problem solving strategies are made explicit.
Practical, step-by-step illustrations of techniques help students devise and evaluate
solutions to programming problems. Introduced where they are most relevant, these
strategies address barriers to success for many students. Strategies included are:

• Algorithm Design (with pseudocode)
• Tracing Objects
• First Do It By Hand (doing sample calculations by hand)
• Flowcharts
• Selecting Test Cases
• Hand-Tracing
• Storyboards
• Solve a Simpler Problem First
• Adapting Algorithms
• Discovering Algorithms by Manipulating Physical Objects
• Patterns for Object Data
• Estimating the Running Time of an Algorithm

Practice makes perfect.
Of course, programming students need to be able to implement nontrivial programs,
but they first need to have the confidence that they can succeed. This book contains

vi Preface

a substantial number of self-check questions at the end of each section. “Practice It”
pointers suggest exercises to try after each section. And additional practice oppor-
tunities, including code completion questions and skill-oriented multiple-choice
questions, are available online.

A visual approach motivates the reader and eases navigation.
Photographs present visual analogies that explain the
nature and behavior of computer concepts. Step-by-
step figures illustrate complex program operations.
Syntax boxes and example tables present a variety
of typical and special cases in a compact format. It
is easy to get the “lay of the land” by browsing the
visuals, before focusing on the textual material.

Focus on the essentials while being
technically accurate.
An encyclopedic coverage is not helpful for a begin-
ning programmer, but neither is the opposite—
reducing the material to a list of simplistic bullet points. In this book, the essentials
are presented in digestible chunks, with separate notes that go deeper into good prac-
tices or language features when the reader is ready for the additional information.
You will not find artificial over-simplifications that give an illusion of knowledge.

Reinforce sound engineering practices.
A multitude of useful tips on software quality and common errors encourage the
development of good programming habits. The focus is on test-driven development,
encouraging students to test their programs systematically.

Engage with optional science and business exercises.
End-of-chapter exercises are enhanced with problems from scientific and business
domains. Designed to engage students, the exercises illustrate the value of program-
ming in applied fields.

New to This Edition
Updated for Java 8
Java 8 introduces many exciting features, and this edition has been updated to take
advantage of them. Interfaces can now have default and static methods, and lambda
expressions make it easy to provide instances of interfaces with a single method.
The sections on interfaces and sorting have been updated to make these innovations
optionally available.

In addition, Java 7 features such as the try-with-resources statement are now inte-
grated into the text.

© Terraxplorer/iStockphoto.

Visual features help the reader
with navigation.

©
 T

er
ra

xp
lo

re
r/

iS
to

ck
ph

ot
o.

Preface vii

Optional JavaFX Coverage
For those who prefer to use JavaFX instead of Swing, there is a new online resource
that covers graphical user-interface programming with JavaFX.

Interactive Learning
Additional interactive content is available that integrates with this text and immerses
students in activities designed to foster in-depth learning. Students don’t just watch
animations and code traces, they work on generating them. The activities provide
instant feedback to show students what they did right and where they need to study
more. To find out more about how to make this content available in your course, visit
http://wiley.com/go/bjlo2interactivities.

“CodeCheck” is an innovative online service that students can use to work on pro-
gramming problems. You can assign exercises that have already been prepared, and
you can easily add your own. Visit http://codecheck.it to learn more and to try it out.

viii Preface

 A Tour of the Book
This book is intended for a two-semester introduction to programming that may also
include algorithms, data structures, and/or applications.

Part A: Fundamentals (Chapters 1–7)
The first seven chapters follow a traditional approach to basic programming concepts.
Students learn about control structures, stepwise refinement, and arrays. Objects
are used only for input/output and string processing. Input/output is covered in

Figure 1 Chapter Dependencies

9. Inheritance
and Interfaces

12. Object-
Oriented Design

13. Recursion

14. Sorting
and Searching

15. The Java
Collections
Framework

6. Iteration

8. Objects and
Classes

Fundamentals

Object-Oriented Design

Graphical User Interfaces

Data Structures & Algorithms

Online Chapters

10. Graphical
User Interfaces

1. Introduction

2. Fundamental
Data Types

3. Decisions

4. Loops

5. Methods

6. Arrays
and Array Lists

7. Input/Output
and Exception

Handling

11. Advanced
User Interfaces

A gentle
introduction to recursion

is optional.

Sections 7.1 and 7.2
(text �le processing) can be

covered with Chapter 4.

Preface ix

Chapter 7, but Sections 7.1 and 7.2 can be covered with Chapter 4; in that way, stu-
dents can practice writing loops that process text files. Chapter 4 also provides an
optional introduction to programming drawings that consist of lines, rectangles, and
ovals, with an emphasis on reinforcing loops.

Part B: Object-Oriented Design and Graphics (Chapters 8–12)
After students have gained a solid foundation, they are ready to tackle the implemen-
tation of classes in Chapter 8. Chapter 9 covers inheritance and interfaces. A simple
methodology for object-oriented design is presented in Chapter 12. Object-oriented
design may also be covered immediately after Chapter 9 by omitting the GUI ver-
sions of the sample programs. By the end of these chapters, students will be able to
implement programs with multiple interacting classes.

Graphical user interfaces are presented in Chapters 10 and 11. The first of these
chapters enables students to write programs with buttons, text components, and
simple drawings. If you want to go deeper, you will find layout management and
additional user-interface components in the second chapter. Online versions of these
chapters cover JavaFX instead of Swing.

Part C: Data Structures and Algorithms (Chapters 13–15)
Chapters 13–15 cover algorithms and data structures at a level suitable for beginning
students. Recursion, in Chapter 13, starts with simple examples and progresses to
meaningful applications that would be difficult to implement iteratively. Chapter 14
covers quadratic sorting algorithms as well as merge sort, with an informal introduc-
tion to big-Oh notation. In Chapter 15, the Java Collections Framework is presented
from the perspective of a library user, without revealing the implementations of lists
and maps. You can cover this chapter anytime after Chapter 8. Chapters 11–15 are
available in electronic form on the Web.

Any subset of these chapters can be incorporated into a custom print version of
this text; ask your Wiley sales representative for details.

Appendices
Many instructors find it highly beneficial to require a consistent style for all assign-
ments. If the style guide in Appendix E conflicts with instructor sentiment or local
customs, however, it is available in electronic form so that it can be modified. Appen-
dices E–J are available on the Web.

A. The Basic Latin and Latin-1 Subsets of Unicode
B. Java Operator Summary
C. Java Reserved Word Summary
D. The Java Library
E. Java Language Coding Guidelines
F. Tool Summary
G. Number Systems
H. UML Summary
I. Java Syntax Summary
J. HTML Summary

x Preface

Custom Book and eBook Options
Java Concepts may be ordered in both custom print and eBook formats. You can
order a custom print version that includes your choice of chapters—including those
from other Horstmann titles. Visit customselect.wiley.com to create your custom order.

Java Concepts is also available in an electronic eBook format with three key
advantages:

• The price is signifcantly lower than for the printed book.
• The eBook contains all material in the printed book plus the web chapters and

worked examples in one easy-to-browse format.
• You can customize the eBook to include your choice of chapters.

The interactive edition of Java Concepts adds even more value by integrating a wealth
of interactive exercises into the eBook. See http://wiley.com/go/bjlo2interactivities to
find out more about this new format.

Please contact your Wiley sales rep for more information about any of these
options or check www.wiley.com/college/horstmann for available versions.

Web Resources
This book is complemented by a complete suite of online resources. Go to www.wiley.
com/college/horstmann to visit the online companion sites, which include

• Source code for all example programs in the book and its Worked Examples and
Video Examples, plus additional example programs.

• Worked Examples that apply the problem-solving steps in the book to other
realistic examples.

• Video Examples in which the author explains the steps he is taking and shows his
work as he solves a programming problem.

• Lecture presentation slides (for instructors only).
• Solutions to all review and programming exercises (for instructors only).
• A test bank that focuses on skills, not just terminology (for instructors only). This

extensive set of multiple-choice questions can be used with a word processor or
imported into a course management system.

• “CodeCheck” assignments that allow students to work on programming prob-
lems presented in an innovative online service and receive immediate feedback.
Instructors can assign exercises that have already been prepared, or easily add
their own. Visit http://codecheck.it to learn more.

WORKED EXAMPLE 4.1 Credit Card Processing

Learn how to use a loop to remove spaces from a credit card
number. Go to wiley.com/go/bjlo2examples and download
Worked Example 4.1.

VIDEO EXAMPLE 1.1 Compiling and Running a Program

See a demonstration of how to compile and run a simple Java pro-
gram. Go to wiley.com/go/bjlo2videos to view Video Example 1.1.

FULL CODE EXA

Go to wiley.com/go/
bjlo2code to download
a program that dem-
onstrates variables
and assignments.

MPLE

Pointers in the book
describe what students
will �nd on the Web.

Walkthrough xi

A Walkthrough of the Learning Aids
The pedagogical elements in this book work together to focus on and reinforce key
concepts and fundamental principles of programming, with additional tips and detail
organized to support and deepen these fundamentals. In addition to traditional
features, such as chapter objectives and a wealth of exercises, each chapter contains
elements geared to today’s visual learner.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjlo2code to download
a program that
uses common loop
algorithms.

Additional full code examples
provides complete programs for
students to run and modify.

150 Chapter 4 Loops

4.3 The for Loop
It often happens that you want to execute a sequence of statements a given number
of times. You can use a while loop that is controlled by a counter, as in the following
example:

int counter = 1; // Initialize the counter
while (counter <= 10) // Check the counter
{
 System.out.println(counter);
 counter++; // Update the counter
}

Because this loop type is so common, there is a spe-
cial form for it, called the for loop (see Syntax 4.2).

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Some people call this loop count-controlled. In con-
trast, the while loop of the preceding section can be
called an event-controlled loop because it executes
until an event occurs; namely that the balance reaches
the target. Another commonly used term for a
count-controlled loop is definite. You know from
the outset that the loop body will be executed a
definite number of times; ten times in our example.
In contrast, you do not know how many iterations it
takes to accumulate a target balance. Such a loop is
called indefinite.

The for loop is
used when a
value runs from a
starting point to an
ending point with a
constant increment
or decrement.

You can visualize the for loop as
an orderly sequence of steps.

Syntax 4.2 for Statement

Throughout each chapter,
margin notes show where
new concepts are introduced
and provide an outline of key ideas.

Annotations explain required
components and point to more
information on common errors
or best practices associated
with the syntax.

Annotated syntax boxes
provide a quick, visual overview
of new language constructs.

Like a variable in a computer
program, a parking space has
an identifier and a contents.

Analogies to everyday objects are
used to explain the nature and behavior
of concepts such as variables, data
types, loops, and more.

for (int i = 5; i <= 10; i++)
{
 sum = sum + i;
}

This loop executes 6 times.
 See Programming Tip 4.3.

This initialization
happens once
before the loop starts.

The condition is
checked before
each iteration.

This update is
executed after
each iteration.

The variable i
is de�ned only in this

for loop.

These three
expressions should be related.

 See Programming Tip 4.1.

for (initialization; condition; update)
{
 statements
}

Syntax

xii Walkthrough

A recipe for a fruit pie may say to use any kind of fruit.
Here, “fruit” is an example of a parameter variable.
Apples and cherries are examples of arguments.

pie(fruit) pie(fruit)

6.5 Problem Solving: Discovering Algorithms by Manipulating Physical Objects 277

Now how does that help us with our problem, switching the first and the second
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as
Java programmers, we will say that we swap the coins in positions 0 and 4:

Problem Solving sections teach
techniques for generating ideas and
evaluating proposed solutions, often
using pencil and paper or other
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

Next, we swap the coins in positions 1 and 5:

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:
• purchase price1 and fuel ef�ciency1 , the price and fuel efficiency (in mpg) of the first car
• purchase price2 and fuel ef�ciency2, the price and fuel efficiency of the second car
We simply want to know which car is the better buy. That is the desired output.

HOW TO 1.1 Describing an Algorithm with Pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Java, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in
pseudocode: a sequence of precise steps formulated in English.

For example, consider this problem: You have the choice of
buying two cars. One is more fuel efficient than the other, but
also more expensive. You know the price and fuel efficiency (in
miles per gallon, mpg) of both cars. You plan to keep the car for
ten years. Assume a price of $4 per gallon of gas and usage of
15,000 miles per year. You will pay cash for the car and not
worry about financing costs. Which car is the better deal?

How To guides give step-by-step
guidance for common programming
tasks, emphasizing planning and
testing. They answer the beginner’s
question, “Now what do I do?” and
integrate key concepts into a
problem-solving sequence.

Table 1 Variable Declarations in Java

tnemmoCemaN elbairaV

int cans = 6; Declares an integer variable and initializes it with 6.

int total = cans + bottles; The initial value need not be a constant. (Of course, cans and bottles
must have been previously declared.)

bottles = 1; Error: The type is missing. This statement is not a declaration but an
assignment of a new value to an existing variable—see Section 2.1.4.

int bottles = "10"; Error: You cannot initialize a number with a string.

int bottles; Declares an integer variable without initializing it. This can be a
cause for errors—see Common Error 2.1 on page 37.

int cans, bottles; Declares two integer variables in a single statement. In this book, we
will declare each variable in a separate statement.

Memorable photos reinforce
analogies and help students
remember the concepts.

WORKED EXAMPLE 1.1 Writing an Algorithm for Tiling a Floor

This Worked Example shows how to develop an algorithm for laying
tile in an alternating pattern of colors.

Example tables support beginners
with multiple, concrete examples.
These tables point out common
errors and present another quick
reference to the section’s topic.

Worked Examples and
Video Examples apply the
steps in the How To to a
di�erent example, showing
how they can be used to
plan, implement, and test
a solution to another
programming problem.

Walkthrough xiii

•

Figure 3 Parameter Passing

1 Method call result1 =

sideLength =

2 Initializing method parameter variable result1 =

sideLength = 2

3 About to return to the caller result1 =

sideLength =

volume = 8

2

4 After method call result1 = 8

double result1 = cubeVolume(2);

double volume = sideLength * sideLength * sideLength;
return volume;

double result1 = cubeVolume(2);

double result1 = cubeVolume(2);

The parameter variable sideLength of the cubeVolume method is created when the
method is called. 1

• The parameter variable is initialized with the value of the argument that was
passed in the call. In our case, sideLength is set to 2. 2

• The method computes the expression sideLength * sideLength * sideLength, which
has the value 8. That value is stored in the variable volume. 3

• The method returns. All of its variables are removed. The return value is trans-
ferred to the caller, that is, the method calling the cubeVolume method. The caller
puts the return value in the result1 variable. 4

11. Write the for loop of the InvestmentTable.java program as a while loop.
12. How many numbers does this loop print?

for (int n = 10; n >= 0; n--)
{

System.out.println(n);
}

13. Write a for loop that prints all even numbers between 10 and 20 (inclusive).
14. Write a for loop that computes the sum of the integers from 1 to n.
15. How would you modify the for loop of the InvestmentTable.java program to

print all balances until the investment has doubled?

Practice It Now you can try these exercises at the end of the chapter: R4.7, R4.13, E4.8, E4.16.

S E L F C H E C K

Figure 3
Execution of
a for Loop

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Initialize counter1

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Check condition2

for (int counter = 1; counter <= 10; counter++)
{

System.out.println(counter);
}

Execute loop body3

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Update counter4

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Check condition again5

counter = 1

counter = 1

counter = 1

counter = 2

counter = 2

Progressive �gures trace code
segments to help students visualize
the program �ow. Color is used
consistently to make variables and
other elements easily recognizable.

sec01/DoubleInvestment.java

1 /**
2 This program computes the time required to double an investment.
3 */
4 public class DoubleInvestment
5 {
6 public static void main(String[] args)
7 {
8 final double RATE = 5;
9 final double INITIAL_BALANCE = 10000;

10 final double TARGET = 2 * INITIAL_BALANCE;
11
12 double balance = INITIAL_BALANCE;
13 int year = 0;
14
15 // Count the years required for the investment to double
16
17 while (balance < TARGET)
18 {
19 year++;
20 double interest = balance * RATE / 100;
21 balance = balance + interest;
22 }
23
24 System.out.println("The investment doubled after "
25 + year + " years.");
26 }
27 }

Self-check exercises at the
end of each section are designed
to make students think through
the new material—and can
spark discussion in lecture.

Optional science and business
exercises engage students with
realistic applications of Java.

•• Science P6.13 Sounds can be represented by an array of “sample
val ues” that describe the intensity of the sound at a
point in time. The program ch06/sound/SoundEffect.
java reads a sound file (in WAV format), calls a
method process for processing the sample values, and
saves the sound file. Your task is to implement the
process method by introducing an echo. For each
sound value, add the value from 0.2 seconds ago.
Scale the result so that no value is larger than 32767. •• Business P9.6 Implement a superclass Appointment and sub-

classes Onetime, Daily, and Monthly. An appoint-
ment has a description (for example, “see the
dentist”) and a date and time. Write a method
occursOn(int year, int month, int day) that checks
whether the appointment occurs on that date.
For example, for a monthly appointment, you
must check whether the day of the month
matches. Then fill an array of Appointment objects
with a mixture of appointments. Have the user enter a date and print out all appoint-
ments that occur on that date.

Program listings are carefully
designed for easy reading,
going well beyond simple
color coding. Methods are set
o� by a subtle outline.

xiv Walkthrough

Length and Size

Unfortunately, the Java syntax for
determining the number of elements
in an array, an array list, and a string
is not at all consistent. It is a com-
mon error to confuse these. You just
have to remember the correct syntax
for every data type.

Common Error 6.4

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

Common Errors describe the kinds
of errors that students often make,
with an explanation of why the errors
occur, and what to do about them.

Hand-Tracing

A very useful technique for understanding whether a pro-
gram works correctly is called hand-tracing. You simulate
the program’s activity on a sheet of paper. You can use this
method with pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet
of paper is within reach. Make a column for each variable.
Have the program code ready. Use a marker, such as a
paper clip, to mark the current statement. In your mind,
execute statements one at a time. Every time the value of a
variable changes, cross out the old value and write the new
value below the old one.

For example, let’s trace the getTax method with the data
from the program run above.

When the TaxReturn object is constructed, the income
instance variable is set to 80,000 and status is set to MARRIED. Then the getTax method is called.
In lines 31 and 32 of TaxReturn.java, tax1 and tax2 are initialized to 0.
29 public double getTax()
30 {
31 double tax1 = 0;
32 double tax2 = 0;
33

Programming Tip 3.5

Hand-tracing helps you
understand whether a
program works correctly.

income status tax1 tax2

 80000 MARRIED 0 0

Because status is not SINGLE, we move to the else
 branch of the outer if statement (line 46).
34 if (status == SINGLE)
35 {
36 if (income <= RATE1_SINGLE_LIMIT)
37 {
38 tax1 = RATE1 * income;
39 }
40 else
41 {
42 tax1 = RATE1 * RATE1_SINGLE_LIMIT;
43 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
44 }
45 }
46 else
47 {

File Dialog Boxes

In a program with a graphical user interface, you will want to use a file dialog box (such as the
one shown in the figure below) whenever the users of your program need to pick a file. The
JFileChooser class implements a file dialog box for the Swing user-interface toolkit.

The JFileChooser class has many options to fine-tune the display of the dialog box, but in its
most basic form it is quite simple: Construct a file chooser object; then call the showOpenDialog
or showSaveDialog method. Both methods show the same dialog box, but the button for select-
ing a file is labeled “Open” or “Save”, depending on which method you call.

For better placement of the dialog box on the screen, you can specify the user-interface
component over which to pop up the dialog box. If you don’t care where the dialog box pops
up, you can simply pass null. The showOpenDialog and showSaveDialog methods return either
JFileChooser.APPROVE_OPTION, if the user has chosen a file, or JFi leChooser.CANCEL_OPTION, if the
user canceled the selection. If a file was chosen, then you call the getSelectedFile method to
obtain a File object that describes the file. Here is a complete example:

JFileChooser chooser = new JFileChooser();
Scanner in = null;
if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)
{

File selectedFile = chooser.getSelectedFile();
in = new Scanner(selectedFile);
. . .

}

Special Topic 7.2

A JFileChooser Dialog Box

Button is “Save” when
showSaveDialog method

is called

Programming Tips explain
good programming practices,
and encourage students to be
more productive with tips and
techniques such as hand-tracing.

Special Topics present optional
topics and provide additional
explanation of others.

Lambda Expressions

In the preceding section, you saw how to use interfaces for specifying variations in behavior.
The average method needs to measure each object, and it does so by calling the measure method
of the supplied Measurer object.

Unfortunately, the caller of the average method has to do a fair amount of work; namely,
to de�ne a class that implements the Measurer interface and to construct an object of that class.
Java 8 has a convenient shortcut for these steps, provided that the interface has a single abstract
method. Such an interface is called a functional interface because its purpose is to de�ne a
single function. The Measurer interface is an example of a functional interface.

To specify that single function, you can use a lambda expression, an expression that de�nes
the parameters and return value of a method in a compact notation. Here is an example:

(Object obj) -> ((BankAccount) obj).getBalance()

This expression de�nes a function that, given an object, casts it to a BankAccount and returns the
balance.

(The term “lambda expression” comes from a mathematical notation that uses the Greek
letter lambda (λ) instead of the -> symbol. In other programming languages, such an expres-
sion is called a function expression.)

A lambda expression cannot stand alone. It needs to be assigned to a variable whose type is
a functional interface:

Measurer accountMeas = (Object obj) -> ((BankAccount) obj).getBalance();

Java 8 Note 9.3

When computers
were first invented

in the 1940s, a computer filled an
entire room. The photo below shows
the ENIAC (electronic numerical inte-
grator and computer), completed in
1946 at the University of Pennsylvania.
The ENIAC was used by the military
to compute the trajectories of projec-
tiles. Nowadays, computing facilities
of search engines, Internet shops, and
social networks fill huge buildings
called data centers. At the other end of
the spectrum, computers are all around
us. Your cell phone has a computer
inside, as do many credit cards and fare
cards for public transit. A modern car
has several computers––to control the
engine, brakes, lights, and the radio.

This transit card contains a computer.

The advent of ubiqui-
tous computing changed
many aspects of our
lives. Factories used
to employ people to
do repetitive assembly
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people
who know how to work
with those computers.
Books, music, and mov-
ies are nowadays often
consumed on com-
puters, and comput-
ers are almost always
involved in their production. The
book that you are reading right now

could not have been written without
computers.

Computing & Society 1.1 Computers Are Everywhere

Computing & Society presents social
and historical topics on computing—for
interest and to ful�ll the “historical and
social context” requirements of the
ACM/IEEE curriculum guidelines.

Java 8 Notes provide detail
about new features in Java 8.

Acknowledgments xv

Acknowledgments
Many thanks to Don Fowley, Graig Donini, Brad Franklin, Dan Sayre, Anna Pham,
Laura Abrams, and Billy Ray at John Wiley & Sons for their help with this project.
An especially deep acknowledgment and thanks goes to Cindy Johnson for her hard
work, sound judgment, and amazing attention to detail.

I am grateful to Jose Cordova, University of Louisiana at Monroe, Suzanne
Dietrich, Arizona State University, West Campus, Byron Hoy, Stockton University,
Brent Wilson, George Fox University, and David Woolbright, Columbus State
University, for their contributions to the supplemental material.

Every new edition builds on the suggestions and experiences of new and prior
reviewers, contributors, and users. Many thanks to the individuals who provided
feedback, reviewed the manuscript, made valuable suggestions and contributions,
and brought errors and omissions to my attention. They include:

Lynn Aaron, SUNY Rockland
Community College

Karen Arlien, Bismarck State College
Jay Asundi, University of Texas, Dallas
Eugene Backlin, DePaul University
William C. Barge, Trine University
Bruce J. Barton, Suffolk County

Community College
Sanjiv K. Bhatia, University of Missouri,

St. Louis
Anna Bieszczad, California State

University, Channel Islands
Jackie Bird, Northwestern University
Eric Bishop, Northland Pioneer College
Paul Bladek, Edmonds Community

College
Paul Logasa Bogen II, Texas A&M

University
Irene Bruno, George Mason University
Paolo Bucci, Ohio State University
Joe Burgin, College of Southern

Maryland
Robert P. Burton, Brigham Young

University
Leonello Calabresi, University of

Maryland University College
Martine Ceberio, University of Texas,

El Paso
Uday Chakraborty, University of

Missouri, St. Louis
Suchindran Chatterjee, Arizona State

University
Xuemin Chen, Texas Southern

University

Haiyan Cheng, Willamette University
Chakib Chraibi, Barry University
Ta-Tao Chuang, Gonzaga University
Vincent Cicirello, Richard Stockton

College
Mark Clement, Brigham Young

University
Gerald Cohen, St. Joseph’s College
Ralph Conrad, San Antonio College
Dave Cook, Stephen F. Austin State

University
Rebecca Crellin, Community College of

Allegheny County
Leslie Damon, Vermont Technical

College
Geoffrey D. Decker, Northern Illinois

University
Khaled Deeb, Barry University, School

of Adult and Continuing Education
Akshaye Dhawan, Ursinus College
Julius Dichter, University of Bridgeport
Mike Domaratzki, University of

Manitoba
Philip Dorin, Loyola Marymount

University
Anthony J. Dos Reis, SUNY New Paltz
Elizabeth Drake, Santa Fe College
Tom Duffy, Norwalk Community

College
Michael Eckmann, Skidmore College
Sander Eller, California State

Polytechnic University, Pomona
Amita Engineer, Valencia Community

College

xvi Acknowledgments

Dave Evans, Pasadena Community
College

James Factor, Alverno College
Chris Fietkiewicz, Case Western

Reserve University
Terrell Foty, Portland Community

College
Valerie Frear, Daytona State College
Zhenguang Gao, Framingham State

University
Ryan Garlick, University of North Texas
Aaron Garrett, Jacksonville State

University
Stephen Gilbert, Orange Coast College
Rick Giles, Acadia University
Peter van der Goes, Rose State College
Billie Goldstein, Temple University
Michael Gourley, University of Central

Oklahoma
Grigoriy Grinberg, Montgomery

College
Linwu Gu, Indiana University
Sylvain Guinepain, University of

Oklahoma, Norman
Bruce Haft, Glendale Community

College
Nancy Harris, James Madison

University
Allan M. Hart, Minnesota State

University, Mankato
Ric Heishman, George Mason

University
Guy Helmer, Iowa State University
Katherin Herbert, Montclair State

University
Rodney Hoffman, Occidental College
May Hou, Norfolk State University
John Houlihan, Loyola University
Andree Jacobson, University of New

Mexico
Eric Jiang, University of San Diego
Christopher M. Johnson, Guilford

College
Jonathan Kapleau, New Jersey Institute

of Technology
Amitava Karmaker, University of

Wisconsin, Stout
Rajkumar Kempaiah, College of Mount

Saint Vincent

Mugdha Khaladkar, New Jersey Institute
of Technology

Richard Kick, Newbury Park
High School

Julie King, Sullivan University,
Lexington

Samuel Kohn, Touro College
April Kontostathis, Ursinus College
Ron Krawitz, DeVry University
Nat Kumaresan, Georgia Perimeter

College
Debbie Lamprecht, Texas Tech

University
Jian Lin, Eastern Connecticut State

University
Hunter Lloyd, Montana State

University
Cheng Luo, Coppin State University
Kelvin Lwin, University of California,

Merced
Frank Malinowski, Dalton College
John S. Mallozzi, Iona College
Khaled Mansour, Washtenaw

Community College
Kenneth Martin, University of

North Florida
Deborah Mathews, J. Sargeant Reynolds

Community College
Louis Mazzucco, State University of

New York at Cobleskill and
Excelsior College

Drew McDermott, Yale University
Patricia McDermott-Wells, Florida

International University
Hugh McGuire, Grand Valley State

University
Michael L. Mick, Purdue University,

Calumet
Jeanne Milostan, University of

California, Merced
Sandeep Mitra, SUNY Brockport
Michel Mitri, James Madison University
Kenrick Mock, University of Alaska

Anchorage
Namdar Mogharreban, Southern Illinois

University
Jose-Arturo Mora-Soto, University of

Madrid
Shamsi Moussavi, Massbay Community

College

Acknowledgments xvii

Nannette Napier, Georgia Gwinnett
College

Tony Tuan Nguyen, De Anza College
Michael Ondrasek, Wright State

University
K. Palaniappan, University of Missouri
James Papademas, Oakton Community

College
Gary Parker, Connecticut College
Jody Paul, Metropolitan State College of

Denver
Mark Pendergast, Florida Gulf Coast

University
James T. Pepe, Bentley University
Jeff Pittges, Radford University
Tom Plunkett, Virginia Tech
Linda L. Preece, Southern Illinois

University
Vijay Ramachandran, Colgate

University
Craig Reinhart, California Lutheran

University
Jonathan Robinson, Touro College
Chaman Lal Sabharwal, Missouri

University of Science & Technology
Katherine Salch, Illinois Central College
Namita Sarawagi, Rhode Island College
Ben Schafer, University of Northern

Iowa
Walter Schilling, Milwaukee School of

Engineering
Jeffrey Paul Scott, Blackhawk Technical

College
Amon Seagull, NOVA Southeastern

University
Brent Seales, University of Kentucky
Linda Seiter, John Carroll University
Kevin Seppi, Brigham Young University
Ricky J. Sethi, UCLA, USC ISI, and

DeVry University
Narasimha Shashidhar, Sam Houston

State University
Ali Shaykhian, Florida Institute of

Technology
Lal Shimpi, Saint Augustine’s College
Victor Shtern, Boston University
Rahul Simha, George Washington

University
Jeff Six, University of Delaware
Donald W. Smith, Columbia College

Derek Snow, University of Southern
Alabama

Peter Spoerri, Fairfield University
David R. Stampf, Suffolk County

Community College
Peter Stanchev, Kettering University
Ryan Stansifer, Florida Institute of

Technology
Stu Steiner, Eastern Washington

University
Robert Strader, Stephen F. Austin

State University
David Stucki, Otterbein University
Ashok Subramanian, University of

Missouri, St Louis
Jeremy Suing, University of Nebraska,

Lincoln
Dave Sullivan, Boston University
Vaidy Sunderam, Emory University
Hong Sung, University of Central

Oklahoma
Monica Sweat, Georgia Tech University
Joseph Szurek, University of Pittsburgh,

Greensburg
Jack Tan, University of Wisconsin
Cynthia Tanner, West Virginia

University
Russell Tessier, University of

Massachusetts, Amherst
Krishnaprasad Thirunarayan, Wright

State University
Mark Thomas, University of Cincinnati

Blue Ash
Megan Thomas, California State

University, Stanislaus
Timothy Urness, Drake University
Eliana Valenzuela-Andrade, University

of Puerto Rico at Arecibo
Tammy VanDeGrift, University of

Portland
Philip Ventura, Broward College
David R. Vineyard, Kettering University
Qi Wang, Northwest Vista College
Jonathan Weissman, Finger Lakes

Community College
Reginald White, Black Hawk

Community College
Ying Xie, Kennesaw State University
Arthur Yanushka, Christian Brothers

University

xviii Acknowledgments

Chen Ye, University of Illinois, Chicago
Wook-Sung Yoo, Fairfield University
Steve Zale, Middlesex County College
Bahram Zartoshty, California State

University, Northridge
Frank Zeng, Indiana Wesleyan

University

Hairong Zhao, Purdue University
Calumet

Stephen Zilora, Rochester Institute of
Technology

And a special thank you to our class testers:

Eugene Backlin and the students of DePaul University, Loop
Debra M. Duke and the students of J. Sargeant Reynolds Community College
Gerald Gordon and the students of DePaul University, Loop
Mike Gourley and the students of the University of Central Oklahoma
Mohammad Morovati and the students of the College of DuPage
Mutsumi Nakamura and the students of Arizona State University
George Novacky and the students of the University of Pittsburgh
Darrin Rothe and the students of the Milwaukee School of Engineering
Paige Rutner and the students of Georgia Southern University
Narasimha Shashidhar and the students of Sam Houston State University
Mark Sherriff and the students of the University of Virginia
Frank Zeng and the students of Indiana Wesleyan University

CONTENTS

xix

PREFACE v

SPECIAL FEATURES xxvi

INTRODUCTION 1

1.1 Computer Programs 2

1.2 The Anatomy of a Computer 3

1.3 The Java Programming Language 6

1.4 Becoming Familiar with Your
Programming Environment 7
VE 1 Compiling and Running a Program

© Alex Slobodkin/iStockphoto.1.5 Analyzing Your First Program 11

1.6 Errors 14

1.7 PROBLEM SOLVING Algorithm Design 15

The Algorithm Concept 16
An Algorithm for Solving an Investment
Problem 17
Pseudocode 18
From Algorithms to Programs 18

HT 1 Describing an Algorithm with
Pseudocode 19

WE 1 Writing an Algorithm for Tiling a Floor 21

VE 2 Dividing Household Expenses
© Alex Slobodkin/iStockphoto.

FUNDAMENTAL DATA
TYPES 31

2.1 Variables 32

Variable Declarations 32

Number Types 34
Variable Names 35
The Assignment Statement 36
Constants 37
Comments 37

ST 1 Numeric Types in Java 41

ST 2 Big Numbers 42

2.2 Arithmetic 43

Arithmetic Operators 43
Increment and Decrement 43
Integer Division and Remainder 44
Powers and Roots 45

Converting Floating-Point Numbers
to Integers 46

J8 1 Avoiding Negative Remainders 49

ST 3 Combining Assignment and Arithmetic 49

VE 1 Using Integer Division
© Alex Slobodkin/iStockphoto.2.3 Input and Output 50

Reading Input 50
Formatted Output 52

HT 1 Carrying Out Computations 56

WE 1 Computing the Cost of Stamps
© Alex Slobodkin/iStockphoto.2.4 PROBLEM SOLVING First Do it By Hand 59

WE 2 Computing Travel Time
© Alex Slobodkin/iStockphoto.2.5 Strings 61

The String Type 61
Concatenation 61
String Input 62
Escape Sequences 62
Strings and Characters 63
Substrings 63

ST 4 Instance Methods and Static Methods 66

ST 5 Using Dialog Boxes for Input and Output 67

VE 2 Computing Distances on Earth
© Alex Slobodkin/iStockphoto.

DECISIONS 83

3.1 The if Statement 84
ST 1 The Conditional Operator 89

3.2 Comparing Numbers and Strings 90
ST 2 Lexicographic Ordering of Strings 94

HT 1 Implementing an if Statement 95

WE 1 Extracting the Middle
© Alex Slobodkin/iStockphoto.3.3 Multiple Alternatives 98

ST 3 The switch Statement 101

3.4 Nested Branches 102
ST 4 Enumeration Types 107

VE 1 Computing the Plural of an English Word
© Alex Slobodkin/iStockphoto.3.5 PROBLEM SOLVING Flowcharts 107

3.6 PROBLEM SOLVING Test Cases 110
ST 5 Logging 112

3.7 Boolean Variables and Operators 113

1

2

3

xx Contents

ST 6 Short-Circuit Evaluation of Boolean
Operators 116

ST 7 De Morgan’s Law 117

3.8 APPLICATION Input Validation 118
VE 2 The Genetic Code

© Alex Slobodkin/iStockphoto.

LOOPS 142

4.1 The while Loop 142

4.2 PROBLEM SOLVING Hand-Tracing 149

4.3 The for Loop 152

4.4 The do Loop 158

4.5 APPLICATION Processing Sentinel
Values 160
ST 1 The “Loop and a Half” Problem and the

break Statement 162

ST 2 Redirection of Input and Output 163

VE 1 Evaluating a Cell Phone Plan
© Alex Slobodkin/iStockphoto.4.6 PROBLEM SOLVING Storyboards 164

4.7 Common Loop Algorithms 167

Sum and Average Value 167
Counting Matches 167
Finding the First Match 168
Prompting Until a Match is Found 169
Maximum and Minimum 169
Comparing Adjacent Values 170

HT 1 Writing a Loop 171

WE 1 Credit Card Processing
© Alex Slobodkin/iStockphoto.4.8 Nested Loops 174

WE 2 Manipulating the Pixels in an Image
© Alex Slobodkin/iStockphoto.4.9 PROBLEM SOLVING Solve a Simpler

Problem First 178

4.10 APPLICATION Random Numbers and
Simulations 182

Generating Random Numbers 182
Simulating Die Tosses 183
The Monte Carlo Method 184

ST 3 Drawing Graphical Shapes 186

VE 1 Drawing a Spiral
© Alex Slobodkin/iStockphoto.

METHODS 211

5.1 Methods as Black Boxes 212

5.2 Implementing Methods 214

5.3 Parameter Passing 217

5.4 Return Values 220
HT 1 Implementing a Method 222

WE 1 Generating Random Passwords
© Alex Slobodkin/iStockphoto.5.5 Methods Without Return Values 224

5.6 PROBLEM SOLVING Reusable Methods 225

5.7 PROBLEM SOLVING Stepwise
Refnement 229
WE 2 Calculating a Course Grade

© Alex Slobodkin/iStockphoto.5.8 Variable Scope 236
VE 1 Debugging

© Alex Slobodkin/iStockphoto.5.9 Recursive Methods (Optional) 240
HT 2 Thinking Recursively 243

VE 2 Fully Justified Text
© Alex Slobodkin/iStockphoto.

ARRAYS AND ARRAY
LISTS 261

6.1 Arrays 262

Declaring and Using Arrays 262
Array References 265
Partially Filled Arrays 266

6.2 The Enhanced for Loop 269

6.3 Common Array Algorithms 270

Filling 270
Sum and Average Value 271
Maximum and Minimum 271
Element Separators 271
Linear Search 272
Removing an Element 272
Inserting an Element 273
Swapping Elements 274
Copying Arrays 275
Reading Input 276

ST 1 Sorting with the Java Library 279

ST 2 Binary Search 279

6.4 Using Arrays with Methods 280
ST 3 Methods with a Variable Number of

Parameters 284

6.5 PROBLEM SOLVING Adapting
Algorithms 284
HT 1 Working with Arrays 287

WE 1 Rolling the Dice
© Alex Slobodkin/iStockphoto.

4

5

6

Contents xxi

6.6 PROBLEM SOLVING Discovering Algorithms by
Manipulating Physical Objects 291
VE 1 Removing Duplicates from an Array

© Alex Slobodkin/iStockphoto.6.7 Two-Dimensional Arrays 294

Declaring Two-Dimensional Arrays 295
Accessing Elements 295
Locating Neighboring Elements 296
Computing Row and Column Totals 297
Two-Dimensional Array Parameters 298

WE 2 A World Population Table
© Alex Slobodkin/iStockphoto.ST 4 Two-Dimensional Arrays with Variable

Row Lengths 300

ST 5 Multidimensional Arrays 301

6.8 Array Lists 301

Declaring and Using Array Lists 302
Using the Enhanced for Loop with
Array Lists 304
Copying Array Lists 305
Array Lists and Methods 305
Wrappers and Auto-boxing 305
Using Array Algorithms with Array Lists 307
Storing Input Values in an Array List 307
Removing Matches 307
Choosing Between Array Lists and Arrays 308

ST 6 The Diamond Syntax 311

VE 2 Game of Life
© Alex Slobodkin/iStockphoto.

INPUT/OUTPUT AND
EXCEPTION HANDLING 331

7.1 Reading and Writing Text Files 332
ST 1 Reading Web Pages 335

ST 2 File Dialog Boxes 335

ST 3 Reading and Writing Binary Data 336

7.2 Text Input and Output 337

Reading Words 337
Reading Characters 338
Classifying Characters 338
Reading Lines 339
Scanning a String 340
Converting Strings to Numbers 340
Avoiding Errors When Reading Numbers 340
Mixing Number, Word, and Line Input 341
Formatting Output 342

ST 4 Regular Expressions 344

ST 5 Reading an Entire File 344

VE 1 Computing a Document’s Readability
© Alex Slobodkin/iStockphoto.

7.3 Command Line Arguments 345
HT 1 Processing Text Files 348

WE 1 Analyzing Baby Names
© Alex Slobodkin/iStockphoto.7.4 Exception Handling 352

Throwing Exceptions 352
Catching Exceptions 354
Checked Exceptions 355
Closing Resources 357

ST 6 Assertions 360

ST 7 The try/finally Statement 360

7.5 APPLICATION Handling Input Errors 361
VE 2 Detecting Accounting Fraud

© Alex Slobodkin/iStockphoto.

OBJECTS AND CLASSES 375

8.1 Object-Oriented Programming 376

8.2 Implementing a Simple Class 378

8.3 Specifying the Public Interface of
a Class 381
ST 1 The javadoc Utility 384

8.4 Designing the Data Representation 385

8.5 Implementing Instance Methods 386

8.6 Constructors 389
ST 2 Overloading 393

8.7 Testing a Class 393
HT 1 Implementing a Class 395

WE 1 Implementing a Menu Class
© Alex Slobodkin/iStockphoto.VE 1 Paying Off a Loan

© Alex Slobodkin/iStockphoto.8.8 Problem Solving: Tracing Objects 399

8.9 Object References 403

Shared References 403
The null Reference 405
The this Reference 405

ST 3 Calling One Constructor from Another 408

8.10 Static Variables and Methods 408

8.11 PROBLEM SOLVING Patterns for
Object Data 410

Keeping a Total 411
Counting Events 411
Collecting Values 412
Managing Properties of an Object 413
Modeling Objects with Distinct States 413
Describing the Position of an Object 414

VE 2 Modeling a Robot Escaping from a Maze
© Alex Slobodkin/iStockphoto.

7

8

xxii Contents

8.12 Packages 417

Organizing Related Classes into Pack ages 417
Importing Packages 418
Package Names 419
Packages and Source Files 419

ST 4 Package Access 421

HT 2 Programming with Packages 421

INHERITANCE AND
INTERFACES 437

9.1 Inheritance Hierarchies 438

9.2 Implementing Subclasses 442

9.3 Overriding Methods 446
ST 1 Calling the Superclass Constructor 451

9.4 Polymorphism 452
ST 2 Dynamic Method Lookup and the Implicit

Parameter 455

ST 3 Abstract Classes 456

ST 4 Final Methods and Classes 457

ST 5 Protected Access 458

HT 1 Developing an Inheritance Hierarchy 458

WE 1 Implementing an Employee Hierarchy for
Payroll Processing

© Alex Slobodkin/iStockphoto.VE 1 Building a Discussion Board
© Alex Slobodkin/iStockphoto.9.5 Object: The Cosmic Superclass 463

Overriding the toString Method 464
The equals Method 465
The instanceof Operator 466

ST 6 Inheritance and the toString Method 468

ST 7 Inheritance and the equals Method 469

9.6 Interface Types 470

Defining an Interface 470
Implementing an Interface 472
The Comparable Interface 474

ST 8 Constants in Interfaces 476

ST 9 Generic Interface Types 476

J8 1 Static Methods in Interfaces 477

J8 2 Default Methods 477

ST 10 Function Objects 478

J8 3 Lambda Expressions 479

WE 2 Investigating Number Sequences
© Alex Slobodkin/iStockphoto.VE 2 Drawing Geometric Shapes

© Alex Slobodkin/iStockphoto.

GRAPHICAL USER
INTERFACES 493

10.1 Frame Windows 494

Displaying a Frame 494
Adding User-Interface Components to
a Frame 495
Using Inheritance to Customize Frames 497

ST 1 Adding the main Method to the
Frame Class 498

10.2 Events and Event Handling 498

Listening to Events 499
Using Inner Classes for Listeners 501

APPLICATION Showing Growth of an
Investment 503

ST 2 Local Inner Classes 507

ST 3 Anonymous Inner Classes 508

J8 1 Lambda Expressions for Event Handling 509

10.3 Processing Text Input 509

Text Fields 509
Text Areas 511

10.4 Creating Drawings 515

Drawing on a Component 515
Ovals, Lines, Text, and Color 517

APPLICATION Visualizing the Growth of an
Investment 520

HT 1 Drawing Graphical Shapes 525

WE 1 Coding a Bar Chart Creator
© Alex Slobodkin/iStockphoto.VE 1 Solving Crossword Puzzles
© Alex Slobodkin/iStockphoto.

ADVANCED USER
INTERFACES (WEB ONLY)

© Alex Slobodkin/iStockphoto.

11.1 Layout Management

11.2 Choices
Radio Buttons
Check Boxes
Combo Boxes

HT 1 Laying Out a User Interface

WE 1 Programming a Working Calculator

11.3 Menus

11.4 Exploring the Swing Documentation

11.5 Using Timer Events for Animations

9

10

11

Contents xxiii

11.6 Mouse Events
ST 1 Keyboard Events

ST 2 Event Adapters

WE 2 Adding Mouse and Keyboard Support to the
Bar Chart Creator

VE 1 Designing a Baby Naming Program

OBJECT-ORIENTED
DESIGN (WEB ONLY)

© Alex Slobodkin/iStockphoto.

12.1 Classes and Their Responsibilities
Discovering Classes
The CRC Card Method
Cohesion

12.2 Relationships Between Classes
Dependency
Aggregation
Inheritance

HT 1 Using CRC Cards and UML Diagrams in
Program Design

ST 1 Attributes and Methods in UML Diagrams

ST 2 Multiplicities

ST 3 Aggregation, Association, and Composition

12.3 APPLICATION Printing an Invoice
Requirements
CRC Cards
UML Diagrams
Method Documentation
Implementation

WE 1 Simulating an Automatic Teller Machine

RECURSION (WEB ONLY)
© Alex Slobodkin/iStockphoto.

13.1 Triangle Numbers
HT 1 Thinking Recursively

WE 1 Finding Files

13.2 Recursive Helper Methods

13.3 The Efciency of Recursion

13.4 Permutations

13.5 Mutual Recursion

13.6 Backtracking
WE 2 Towers of Hanoi

SORTING AND
SEARCHING (WEB ONLY)

© Alex Slobodkin/iStockphoto.

14.1 Selection Sort

14.2 Profling the Selection Sort Algorithm

14.3 Analyzing the Performance of the
Selection Sort Algorithm
ST 1 Oh, Omega, and Theta

ST 2 Insertion Sort

14.4 Merge Sort

14.5 Analyzing the Merge Sort Algorithm
ST 3 The Quicksort Algorithm

14.6 Searching
Linear Search
Binary Search

14.7 PROBLEM SOLVING Estimating the Running
Time of an Algorithm
Linear Time
Quadratic Time
The Triangle Pattern
Logarithmic Time

14.8 Sorting and Searching in the Java Library
Sorting
Binary Search
Comparing Objects

ST 4 The Comparator Interface

J8 1 Comparators with Lambda Expressions

WE 1 Enhancing the Insertion Sort Algorithm

THE JAVA COLLECTIONS
FRAMEWORK
(WEB ONLY)

© Alex Slobodkin/iStockphoto.

15.1 An Overview of the Collections Framework

15.2 Linked Lists
The Structure of Linked Lists
The LinkedList Class of the Java
Collections Framework
List Iterators

15.3 Sets
Choosing a Set Implementation
Working with Sets

12

13

14

15

xxiv Contents

15.4 Maps
J8 1 Updating Map Entries

HT 1 Choosing a Collection

WE 1 Word Frequency

ST 1 Hash Functions

15.5 Stacks, Queues, and Priority Queues
Stacks
Queues
Priority Queues

15.6 Stack and Queue Applications
Balancing Parentheses
Evaluating Reverse Polish Expressions
Evaluating Algebraic Expressions
Backtracking

WE 2 Simulating a Queue of Waiting Customers

VE 1 Building a Table of Contents

ST 2 Reverse Polish Notation

APPENDIX A THE BASIC LATIN AND LATIN-1 SUBSETS
OF UNICODE A-1

APPENDIX B JAVA OPERATOR SUMMARY A-5

APPENDIX C JAVA RESERVED WORD SUMMARY A-7

APPENDIX D THE JAVA LIBRARY A-9

APPENDIX E TOOL SUMMARY
© Alex Slobodkin/iStockphoto.APPENDIX F NUMBER SYSTEMS

© Alex Slobodkin/iStockphoto.APPENDIX G UML SUMMARY
© Alex Slobodkin/iStockphoto.APPENDIX H JAVA SYNTAX SUMMARY

© Alex Slobodkin/iStockphoto.APPENDIX I HTML SUMMARY
© Alex Slobodkin/iStockphoto.

GLOSSARY G-1

INDEX I-1

CREDITS C-1

Contents xxv

ALPHABETICAL LIST OF SYNTAX BOXES
Arrays 263
Array Lists 302
Assignment 36

Cast 46
Catching Exceptions 354
Comparisons 91
Constant Declaration 37
Constructor with Superclass Initializer 452
Constructors 390

for Statement 154

if Statement 86
Input Statement 51
Instance Methods 387
Instance Variable Declaration 379
Interface Types 471

Java Program 12

Package Specifcation 419

Static Method Declaration 215
Subclass Declaration 444

The Enhanced for Loop 270
The instanceof Operator 467
The throws Clause 357
The try-with-resources Statement 357
Throwing an Exception 352
Two-Dimensional Array Declaration 295

Variable Declaration 33

while Statement 142

xxvi Special Features

© Alex Slobodkin/iStockphoto.

 Available online at www.wiley.com/college/horstmann.

© Steve Simzer/iStockphoto.

CHAPTER

© John Bell/iStockphoto.
© Alex Slobodkin/iStockphoto.

Common
Errors

How Tos
 and

Worked Examples

1 Introduction Omitting Semicolons 13

Misspelling Words 15

Compiling and Running
a Program Video

Describing an Algorithm
with Pseudocode 19

Writing an Algorithm for
Tiling a Floor

© Alex Slobodkin/iStockphoto.Dividing Household Expenses Video

2 Fundamental
Data Types

Using Undeclared or
Uninitialized Variables 39

Overfow 40

Roundof Errors 40

Unintended Integer Division 48

Unbalanced Parentheses 48

Using Integer Division Video

Carrying out Computations 56

Computing the Cost
of Stamps

© Alex Slobodkin/iStockphoto.Computing Travel Time
© Alex Slobodkin/iStockphoto.Computing Distances on Earth Video

3 Decisions A Semicolon After the
if Condition 88

Exact Comparison of
Floating-Point Numbers 93

Using == to Compare Strings 94

The Dangling else Problem 106

Combining Multiple
Relational Operators 115

Confusing && and ||
Conditions 116

Implementing an
if Statement 95

Extracting the Middle
© Alex Slobodkin/iStockphoto.Computing the Plural of

an English Word Video

The Genetic Code Video

4 Loops Don’t Think “Are We
There Yet?” 146

Infnite Loops 147

Of-by-One Errors 147

Evaluating a Cell Phone Plan Video

Writing a Loop 171

Credit Card Processing
© Alex Slobodkin/iStockphoto.Manipulating the Pixels

in an Image
© Alex Slobodkin/iStockphoto.Drawing a Spiral Video

5 Methods Trying to Modify Arguments 219

Missing Return Value 222

Implementing a Method 222

Generating Random
Passwords

© Alex Slobodkin/iStockphoto.Calculating a Course Grade
© Alex Slobodkin/iStockphoto.Debugging Video

Thinking Recursively 243

Fully Justifed Text Video

Special Features xxvii

© Alex Slobodkin/iStockphoto.

 Available online at www.wiley.com/college/horstmann.

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

© subjug/iStockphoto.

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Backup Copies 10

Computers Are Everywhere 5

Choose Descriptive Variable
Names 40

Do Not Use Magic Numbers 41

Spaces in Expressions 49

Use the API Documentation 55

Numeric Types in Java 41

Big Numbers 42

© subjug/iStockphoto.

Avoiding Negative Remainders 49

Combining Assignment
and Arithmetic 49

Instance Methods and
Static Methods 66

Using Dialog Boxes for Input
and Output 67

The Pentium
Floating-Point Bug 50

International Alphabets
and Unicode 68

Brace Layout 88

Always Use Braces 88

Tabs 89

Avoid Duplication in Branches 90

Hand-Tracing 105

Make a Schedule and Make
Time for Unexpected
Problems 111

The Conditional Operator 89

Lexicographic Ordering
of Strings 94

The switch Statement 101

Enumeration Types 107

Logging 112

Short-Circuit Evaluation
of Boolean Operators 116

De Morgan’s Law 117

The Denver Airport
Luggage System 97

Artifcial Intelligence 121

Use for Loops for Their
Intended Purpose Only 157

Choose Loop Bounds That
Match Your Task 157

Count Iterations 158

Flowcharts for Loops 159

The Loop-and-a-Half Problem
and the break Statement 162

Redirection of Input
and Output 163

Drawing Graphical Shapes 186

The First Bug 148

Digital Piracy 188

Method Comments 217

Do Not Modify Parameter
Variables 219

Keep Methods Short 234

Tracing Methods 234

Stubs 235

Using a Debugger 239

Personal Computing 228

xxviii Special Features

© Alex Slobodkin/iStockphoto.

 Available online at www.wiley.com/college/horstmann.

© Steve Simzer/iStockphoto.

CHAPTER

© John Bell/iStockphoto.
© Alex Slobodkin/iStockphoto.

Common
Errors

How Tos
 and

Worked Examples

6 Arrays and Array Lists Bounds Errors 267

Uninitialized Arrays 267

Underestimating the Size
of a Data Set 279

Length and Size 311

Working with Arrays 287

Rolling the Dice
© Alex Slobodkin/iStockphoto.Removing Duplicates from

an Array Video

A World Population Table
© Alex Slobodkin/iStockphoto.Game of Life Video

7 Input/Output and
Exception Handling

Backslashes in File Names 335

Constructing a Scanner with
a String 335

Computing a Document’s
Readability Video

Processing Text Files 348

Analyzing Baby Names
© Alex Slobodkin/iStockphoto.Detecting Accounting Fraud Video

8 Objects and Classes Trying to Call a Constructor 392

Declaring a Constructor
as void 393

Forgetting to Initialize
Object References
in a Constructor 407

Confusing Dots 420

Implementing a Class 395

Implementing a Menu Class
© Alex Slobodkin/iStockphoto.Paying Of a Loan Video

Modeling a Robot Escaping
from a Maze Video

Programming with Packages 421

9 Inheritance and
Interfaces

Replicating Instance Variables
from the Superclass 445

Confusing Super- and
Subclasses 446

Accidental Overloading 450

Forgetting to Use super
When Invoking a
Superclass Method 451

Don’t Use Type Tests 468

Forgetting to Declare Implementing
Methods as Public 475

Developing an
Inheritance Hierarchy 458

Implementing an
Employee Hierarchy for
Payroll Processing

© Alex Slobodkin/iStockphoto.Building a Discussion Board Video

Investigating Number Sequences
© Alex Slobodkin/iStockphoto.Drawing Geometric Shapes Video

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Use Arrays for Sequences
of Related Items 268

Reading Exception Reports 286

Sorting with the Java Library 279

Binary Search 279

Methods with a Variable
Number of Parameters 284

Two-Dimensional Arrays with
Variable Row Lengths 300

Multidimensional Arrays 301

The Diamond Syntax 311

Computer Viruses 268

Throw Early, Catch Late 359

Do Not Squelch Exceptions 359

Do Throw Specifc Exceptions 360

Reading Web Pages 335

File Dialog Boxes 335

Reading and Writing
Binary Data 336

Regular Expressions 344

Reading an Entire File 344

Assertions 360

The try/finally Statement 360

Encryption Algorithms 351

The Ariane Rocket Incident 361

All Instance Variables Should
Be Private; Most Methods
Should Be Public 388

The javadoc Utility 384

Overloading 393

Calling One Constructor
from Another 408

Package Access 421

Open Source and
Free Software 402

Electronic Voting Machines 416

Use a Single Class for Variation
in Values, Inheritance for
Variation in Behavior 442

Comparing Integers and
Floating-Point Numbers 475

Calling the Superclass
Constructor 451

Dynamic Method Lookup and
the Implicit Parameter 455

Abstract Classes 456

Final Methods and Classes 457

Protected Access 458

Inheritance and the
toString Method 468

Inheritance and the
equals Method 469

Constants in Interfaces 476

Generic Interface Types 476

© subjug/iStockphoto.

Static Methods in Interfaces 477

© subjug/iStockphoto.

Default Methods 477

Function Objects 478

© subjug/iStockphoto.

Lambda Expressions 479

Who Controls the Internet? 481

Special Features xxix

© Alex Slobodkin/iStockphoto.

 Available online at www.wiley.com/college/horstmann.

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

© subjug/iStockphoto.

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Use Arrays for Sequences
of Related Items 268

Reading Exception Reports 286

Sorting with the Java Library 279

Binary Search 279

Methods with a Variable
Number of Parameters 284

Two-Dimensional Arrays with
Variable Row Lengths 300

Multidimensional Arrays 301

The Diamond Syntax 311

Computer Viruses 268

Throw Early, Catch Late 359

Do Not Squelch Exceptions 359

Do Throw Specifc Exceptions 360

Reading Web Pages 335

File Dialog Boxes 335

Reading and Writing
Binary Data 336

Regular Expressions 344

Reading an Entire File 344

Assertions 360

The try/finally Statement 360

Encryption Algorithms 351

The Ariane Rocket Incident 361

All Instance Variables Should
Be Private; Most Methods
Should Be Public 388

The javadoc Utility 384

Overloading 393

Calling One Constructor
from Another 408

Package Access 421

Open Source and
Free Software 402

Electronic Voting Machines 416

Use a Single Class for Variation
in Values, Inheritance for
Variation in Behavior 442

Comparing Integers and
Floating-Point Numbers 475

Calling the Superclass
Constructor 451

Dynamic Method Lookup and
the Implicit Parameter 455

Abstract Classes 456

Final Methods and Classes 457

Protected Access 458

Inheritance and the
toString Method 468

Inheritance and the
equals Method 469

Constants in Interfaces 476

Generic Interface Types 476

© subjug/iStockphoto.

Static Methods in Interfaces 477

© subjug/iStockphoto.

Default Methods 477

Function Objects 478

© subjug/iStockphoto.

Lambda Expressions 479

Who Controls the Internet? 481

xxx Special Features

© Alex Slobodkin/iStockphoto.

 Available online at www.wiley.com/college/horstmann.

© Steve Simzer/iStockphoto.

CHAPTER

© John Bell/iStockphoto.
© Alex Slobodkin/iStockphoto.

Common
Errors

How Tos
 and

Worked Examples

10 Graphical User
Interfaces

Modifying Parameter Types
in the Implementing Method 506

Forgetting to Attach a Listener 506

Forgetting to Repaint 524

By Default, Components Have
Zero Width and Height 525

Drawing Graphical Shapes 525

Coding a Bar Chart Creator
© Alex Slobodkin/iStockphoto.Solving Crossword Puzzles Video

11 Advanced User
Interfaces
(WEB ONLY)

© Alex Slobodkin/iStockphoto.

Laying Out a User Interface
© Alex Slobodkin/iStockphoto.Programming a Working

Calculator
© Alex Slobodkin/iStockphoto.Adding Mouse and

Keyboard Support to the
Bar Chart Creator

© Alex Slobodkin/iStockphoto.Designing a Baby
Naming Program

© Alex Slobodkin/iStockphoto.

12 Object-Oriented Design
(WEB ONLY)

© Alex Slobodkin/iStockphoto.

Using CRC Cards and
UML Diagrams in
Program Design

© Alex Slobodkin/iStockphoto.Simulating an Automatic
Teller Machine

© Alex Slobodkin/iStockphoto.

13 Recursion
(WEB ONLY)

© Alex Slobodkin/iStockphoto.

Infnite Recursion
© Alex Slobodkin/iStockphoto.Tracing Through Recursive

Methods
© Alex Slobodkin/iStockphoto.

Thinking Recursively
© Alex Slobodkin/iStockphoto.Finding Files
© Alex Slobodkin/iStockphoto.Towers of Hanoi
© Alex Slobodkin/iStockphoto.

14 Sorting and Searching
(WEB ONLY)

© Alex Slobodkin/iStockphoto.

The compareTo Method Can
Return Any Integer,
Not Just –1, 0, and 1

© Alex Slobodkin/iStockphoto.

Enhancing the Insertion
Sort Algorithm

© Alex Slobodkin/iStockphoto.

15 The Java Collections
Framework
(WEB ONLY)

© Alex Slobodkin/iStockphoto.

Choosing a Collection
© Alex Slobodkin/iStockphoto.Word Frequency
© Alex Slobodkin/iStockphoto.Simulating a Queue of

Waiting Customers
© Alex Slobodkin/iStockphoto.Building a Table of Contents
© Alex Slobodkin/iStockphoto.

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Don’t Use a Frame as a Listener 506 Adding the main Method to
the Frame Class 498

Local Inner Classes 507

Anonymous Inner Classes 508

© subjug/iStockphoto.

Lambda Expressions
for Event Handling 509

Use a GUI Builder
© Alex Slobodkin/iStockphoto.

Keyboard Events
© Alex Slobodkin/iStockphoto.Event Adapters
© Alex Slobodkin/iStockphoto.

Make Parallel Arrays into
Arrays of Objects

© Alex Slobodkin/iStockphoto.

Attributes and Methods in
UML Diagrams

© Alex Slobodkin/iStockphoto.Multiplicities
© Alex Slobodkin/iStockphoto.Aggregation, Association,

and Composition
© Alex Slobodkin/iStockphoto.

Databases and Privacy
© Alex Slobodkin/iStockphoto.

The Limits of Computation
© Alex Slobodkin/iStockphoto.

Oh, Omega, and Theta
© Alex Slobodkin/iStockphoto.Insertion Sort
© Alex Slobodkin/iStockphoto.The Quicksort Algorithm
© Alex Slobodkin/iStockphoto.The Comparator Interface
© Alex Slobodkin/iStockphoto.

© subjug/iStockphoto.

Comparators with
Lambda Expressions

© Alex Slobodkin/iStockphoto.

The First Programmer
© Alex Slobodkin/iStockphoto.

Use Interface References to
Manipulate Data Structures

© Alex Slobodkin/iStockphoto.
© subjug/iStockphoto.

Updating Map Entries
© Alex Slobodkin/iStockphoto.

Hash Functions
© Alex Slobodkin/iStockphoto.Reverse Polish Notation
© Alex Slobodkin/iStockphoto.

Standardization
© Alex Slobodkin/iStockphoto.

Special Features xxxi

© Alex Slobodkin/iStockphoto.

 Available online at www.wiley.com/college/horstmann.

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

© subjug/iStockphoto.

Programming
Tips

Special Topics
 and

Java 8 Notes

Computing &
Society

Don’t Use a Frame as a Listener 506 Adding the main Method to
the Frame Class 498

Local Inner Classes 507

Anonymous Inner Classes 508

© subjug/iStockphoto.

Lambda Expressions
for Event Handling 509

Use a GUI Builder
© Alex Slobodkin/iStockphoto.

Keyboard Events
© Alex Slobodkin/iStockphoto.Event Adapters
© Alex Slobodkin/iStockphoto.

Make Parallel Arrays into
Arrays of Objects

© Alex Slobodkin/iStockphoto.

Attributes and Methods in
UML Diagrams

© Alex Slobodkin/iStockphoto.Multiplicities
© Alex Slobodkin/iStockphoto.Aggregation, Association,

and Composition
© Alex Slobodkin/iStockphoto.

Databases and Privacy
© Alex Slobodkin/iStockphoto.

The Limits of Computation
© Alex Slobodkin/iStockphoto.

Oh, Omega, and Theta
© Alex Slobodkin/iStockphoto.Insertion Sort
© Alex Slobodkin/iStockphoto.The Quicksort Algorithm
© Alex Slobodkin/iStockphoto.The Comparator Interface
© Alex Slobodkin/iStockphoto.

© subjug/iStockphoto.

Comparators with
Lambda Expressions

© Alex Slobodkin/iStockphoto.

The First Programmer
© Alex Slobodkin/iStockphoto.

Use Interface References to
Manipulate Data Structures

© Alex Slobodkin/iStockphoto.
© subjug/iStockphoto.

Updating Map Entries
© Alex Slobodkin/iStockphoto.

Hash Functions
© Alex Slobodkin/iStockphoto.Reverse Polish Notation
© Alex Slobodkin/iStockphoto.

Standardization
© Alex Slobodkin/iStockphoto.

1C H A P T E R

1

INTRODUCTION

To learn about computers
and programming

To compile and run your first Java program

To recognize compile-time and run-time errors

To describe an algorithm with pseudocode

CHAPTER GOALS

CHAPTER CONTENTS

1.1 COMPUTER PROGRAMS 2

1.2 THE ANATOMY OF A COMPUTER 3

C&S Computers Are Everywhere 5

1.3 THE JAVA PROGRAMMING
LANGUAGE 6

1.4 BECOMING FAMILIAR WITH YOUR
PROGRAMMING ENVIRONMENT 7

PT 1 Backup Copies 10
VE 1 Compiling and Running a Program

© Alex Slobodkin/iStockphoto.
1.5 ANALYZING YOUR FIRST

PROGRAM 11

SYN Java Program 12
CE 1 Omitting Semicolons 13

1.6 ERRORS 14

CE 2 Misspelling Words 15

1.7 PROBLEM SOLVING:
ALGORITHM DESIGN 15

HT 1 Describing an Algorithm with
Pseudocode 19

WE 1 Writing an Algorithm for Tiling
a Floor 21

VE 2 Dividing Household Expenses
© Alex Slobodkin/iStockphoto.

© JanPietruszka/iStockphoto.

© JanPietruszka/iStockphoto.

2

Just as you gather tools, study a project, and make a plan for
tackling it, in this chapter you will gather up the basics you
need to start learning to program. After a brief introduction
to computer hardware, software, and programming in
general, you will learn how to write and run your first
Java program. You will also learn how to diagnose and
fix programming errors, and how to use pseudocode to
describe an algorithm—a step-by-step description of how
to solve a problem—as you plan your computer programs.

1.1 Computer Programs
You have probably used a computer for work or fun. Many people use computers
for everyday tasks such as electronic banking or writing a term paper. Computers are
good for such tasks. They can handle repetitive chores, such as totaling up numbers
or placing words on a page, without getting bored or exhausted.

The flexibility of a computer is quite an amazing phenomenon. The same machine
can balance your checkbook, lay out your term paper, and play a game. In contrast,
other machines carry out a much nar rower range of tasks; a car drives and a toaster
toasts. Computers can carry out a wide range of tasks because they execute different
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs.
A computer program tells a computer, in minute detail, the sequence of steps that are
needed to fulfill a task. The physical computer and periph eral devices are collectively
called the hardware. The programs the computer executes are called the soft ware.

Today’s computer programs are so sophisticated that it is hard to believe that they
are composed of extremely primitive instructions. A typical instruction may be one
of the following:

• Put a red dot at a given screen position.
• Add up two numbers.
• If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains
a huge number of such instructions, and because the computer can execute them at
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor
that supports fancy fonts and pictures is a complex task that requires a team of many
highly-skilled programmers. Your first programming efforts will be more mundane.
The concepts and skills you learn in this book form an important foundation, and
you should not be disappointed if your first programs do not rival the sophis ticated
software that is familiar to you. Actually, you will find that there is an immense thrill
even in sim ple programming tasks. It is an amazing experience to see the computer
precisely and quickly carry out a task that would take you hours of drudgery, to

Computers
execute very basic
instructions in
rapid succession.

A computer program
is a sequence
of instructions
and decisions.

Programming is the
act of designing
and implementing
computer programs.

© JanPietruszka/iStockphoto.

© JanPietruszka/iStockphoto.

1.2 The Anatomy of a Computer 3

make small changes in a program that lead to immediate improvements, and to see the
computer become an extension of your mental powers.

1. What is required to play music on a computer?
2. Why is a CD player less flexible than a computer?
3. What does a computer user need to know about programming in order to play a

video game?

1.2 The Anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central
processing unit (CPU) (see Figure 1). The inside
wiring of the CPU is enormously complicated.
For example, the Intel Core processor (a popular
CPU for per sonal computers at the time of this
writing) is composed of several hundred million
structural elements, called transistors.

The CPU performs program control and
data processing. That is, the CPU locates and
executes the program instructions; it carries out
arithmetic operations such as addition, subtrac-
tion, multiplication, and division; it fetches data
from external memory or devices and places
processed data into storage.

There are two kinds of storage. Primary stor-
age, or memory, is made from electronic circuits that can store data, provided they are
supplied with electric power. Secondary storage, usually a hard disk (see Figure 2)

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

© Amorphis/iStockphoto.

Figure 1 Central Processing Unit

The central
processing unit (CPU)
performs program
control and
data processing.

Storage devices
include memory and
secondary storage.

Figure 2 A Hard Disk
© PhotoDisc, Inc./Getty Images, Inc.

©
 A

m
or

ph
is

/iS
to

ck
ph

ot
o.

P
ho

to
D

is
c,

 I
nc

./G
et

ty
 I

m
ag

es
, I

nc
.

4 Chapter 1 Introduction

or a solid-state drive, provides slower and less expensive storage that persists without
electricity. A hard disk consists of rotating platters, which are coated with a mag netic
material. A solid-state drive uses electronic components that can retain information
without power, and without moving parts.

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits infor mation (called output) to the user through a display screen,
speakers, and printers. The user can enter information (called input) for the computer
by using a keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected
through networks. Through the network cabling, the computer can read data and
programs from central storage locations or send data to other computers. To the user
of a networked computer, it may not even be obvious which data reside on the com-
puter itself and which are transmitted through the network.

Figure 3 gives a schematic overview of the architecture of a personal computer.
Program instructions and data (such as text, numbers, audio, or video) reside in sec-
ondary storage or elsewhere on the network. When a program is started, its instruc-
tions are brought into memory, where the CPU can read them. The CPU reads and
executes one instruction at a time. As directed by these instructions, the CPU reads
data, modifies it, and writes it back to memory or secondary storage. Some program
instruc tions will cause the CPU to place dots on the display screen or printer or to
vibrate the speaker. As these actions happen many times over and at great speed, the
human user will perceive images and sound. Some program instructions read user
input from the keyboard, mouse, touch sensor, or microphone. The program ana-
lyzes the nature of these inputs and then executes the next appropriate instruction.

Figure 3 Schematic Design of a Personal Computer

Printer

Mouse/Trackpad

Keyboard

Microphone

Ports

CPU

Memory

Disk
controller

Secondary storage

Monitor

Speakers

Internet
Network
controller

1.2 The Anatomy of a Computer 5

4. Where is a program stored when it is not currently running?

5. Which part of the computer carries out arithmetic operations, such as addition
and multiplication?

6. A modern smartphone is a computer, comparable to a desktop computer. Which
components of a smartphone correspond to those shown in Figure 3?

Practice It Now you can try these exercises at the end of the chapter: R1.2, R1.3.

Computing & Society 1.1 Computers Are Everywhere

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

When computers
were first invented

in the 1940s, a computer filled an
entire room. The photo below shows
the ENIAC (electronic numerical inte-
grator and computer), completed in
1946 at the University of Pennsylvania.
The ENIAC was used by the military to
compute the trajectories of projectiles.
Nowadays, computing facilities of
search engines, Internet shops, and
social networks fill huge buildings
called data centers. At the other end of
the spectrum, computers are all around
us. Your cell phone has a computer
inside, as do many credit cards and fare
cards for public transit. A modern car
has several computers––to control the
engine, brakes, lights, and the radio.

The advent of ubiqui-
tous computing changed
many aspects of our
lives. Factories used
to employ people to
do repetitive assembly
tasks that are today
carried out by computer-
controlled robots, oper-
ated by a few people
who know how to work
with those computers.
Books, music, and mov-
ies nowadays are often
consumed on comput-
ers, and computers are
almost always involved
in their production. The book that you
are reading right now could not have

been written without computers.
Knowing about computers and

how to program them has become
an essential skill in many careers.
Engineers design computer-controlled
cars and medical equipment that
preserve lives. Computer scientists
develop programs that help people
come together to support social
causes. For example, activists used
social networks to share videos
showing abuse by repressive regimes,
and this information was instrumental
in changing public opinion.

As computers, large and small,
become ever more embedded in our
everyday lives, it is increasingly impor-
tant for everyone to understand how
they work, and how to work with them.
As you use this book to learn how to
program a computer, you will develop
a good understanding of computing
fundamentals that will make you a
more informed citizen and, perhaps,
a computing professional.

© Media Bakery.

© Maurice Savage/Alamy Limited.
This transit card contains a computer.

© UPPA/Photoshot.

The ENIAC

©
 M

au
ri

ce
 S

av
ag

e/
A

la
m

y
L

im
it

ed
.

©
 U

P
PA

/P
ho

to
sh

ot
.

6 Chapter 1 Introduction

1.3 The Java Programming Language
In order to write a computer program, you need to provide a sequence of instructions
that the CPU can execute. A computer program consists of a large number of simple
CPU instructions, and it is tedious and error-prone to specify them one by one. For
that reason, high-level programming languages have been created. In a high-level
language, you specify the actions that your program should carry out. A compiler
translates the high-level instructions into the more detailed instructions (called
machine code)required by the CPU. Many different programming languages have
been designed for different purposes.

In 1991, a group led by James Gosling and Patrick Naughton at Sun Microsystems
designed a programming language, code-named “Green”, for use in consumer
devices, such as intelligent television “set-top” boxes. The language was designed to
be simple, secure, and usable for many dif ferent processor types. No customer was
ever found for this technology.

Gosling recounts that in 1994 the team realized,
“We could write a really cool browser. It was one
of the few things in the client/server main stream
that needed some of the weird things we’d done:
architecture neu tral, real-time, reliable, secure.”
Java was introduced to an enthusiastic crowd at
the SunWorld exhibition in 1995, together with a
browser that ran applets—Java code that can be
located anywhere on the Internet. The figure at
right shows a typical example of an applet.

Since then, Java has grown at a phenomenal rate.
Programmers have embraced the language because
it is easier to use than its closest rival, C++. In addition, Java has a rich library that
makes it possible to write portable programs that can bypass proprietary operating
systems—a feature that was eagerly sought by those who wanted to be independent
of those proprietary systems and was bitterly fought by their ven dors. A “micro edi-
tion” and an “enterprise edition” of the Java library allow Java programmers to target
hardware ranging from smart cards to the largest Internet servers.

Because Java was designed for the Internet, it has two attributes that make it very
suitable for begin ners: safety and portability.

Table 1 Java Versions (since Version 1.0 in 1996)

Version Year Important New Features Version Year Important New Features

1.1 1997 Inner classes 5 2004 Generic classes, enhanced for loop,
auto-boxing, enumerations,

annotations

1.2 1998 Swing, Collections framework 6 2006 Library improvements

1.3 2000 Performance enhancements 7 2011 Small language changes and library
improvements

1.4 2002 Assertions, XML support 8 2014 Function expressions, streams, new
date/time library

© James Sullivan/Getty Images.

James Gosling

An Applet for Visualizing Molecules

Java was originally
designed for
programming
consumer devices,
but it was first
successfully used
to write Internet
applets.

Java was designed to
be safe and portable,
benefiting both
Internet users
and students.

Ja
m

es
 S

ul
liv

an
/G

et
ty

 I
m

ag
es

.

1.4 Becoming Familiar with Your Programming Environment 7

Java was designed so that anyone can execute programs in their browser without
fear. The safety features of the Java language ensure that a program is terminated if it
tries to do something unsafe. Having a safe environment is also helpful for anyone
learning Java. When you make an error that results in unsafe behavior, your program
is terminated and you receive an accurate error report.

The other benefit of Java is portability. The same Java program will run, without
change, on Windows, UNIX, Linux, or Macintosh. In order to achieve portability,
the Java compiler does not translate Java programs directly into CPU instructions.
Instead, compiled Java programs contain instructions for the Java virtual machine,
a program that simulates a real CPU. Portability is another benefit for the begin ning
student. You do not have to learn how to write programs for different platforms.

At this time, Java is firmly established as one of the most important languages for
general-purpose pro gramming as well as for computer science instruction. However,
although Java is a good language for beginners, it is not perfect, for three reasons.

Because Java was not specifically designed for students, no thought was given to
making it really sim ple to write basic programs. A certain amount of technical machin-
ery is necessary to write even the simplest programs. This is not a problem for pro-
fessional programmers, but it can be a nuisance for beginning students. As you learn
how to program in Java, there will be times when you will be asked to be satisfied with
a preliminary explanation and wait for more complete detail in a later chapter.

Java has been extended many times during its life—see Table 1. In this book, we
assume that you have Java version 7 or later.

Finally, you cannot hope to learn all of Java in one course. The Java language itself
is relatively simple, but Java contains a vast set of library packages that are required
to write useful programs. There are pack ages for graphics, user-interface design,
cryptography, networking, sound, database storage, and many other purposes. Even
expert Java programmers cannot hope to know the contents of all of the packages—
they just use those that they need for particular projects.

Using this book, you should expect to learn a good deal about the Java language
and about the most important packages. Keep in mind that the central goal of this
book is not to make you memorize Java minutiae, but to teach you how to think
about programming.

7. What are the two most important benefits of the Java language?
8. How long does it take to learn the entire Java library?

Practice It Now you can try this exercise at the end of the chapter: R1.5.

1.4 Becoming Familiar with Your
Programming Environment

Many students find that the tools they need as programmers are very different from
the software with which they are familiar. You should spend some time making your-
self familiar with your programming environment. Because computer systems vary
widely, this book can only give an outline of the steps you need to follow. It is a good
idea to participate in a hands-on lab, or to ask a knowledgeable friend to give you a tour.

Java programs
are distributed as
instructions for a
virtual machine,
making them
platform-independent.

Java has a very
large library. Focus
on learning those
parts of the library
that you need for
your programming
projects.

© Nicholas Homrich/iStockphoto.

S E L F C H E C K

Set aside time to
become familiar with
the programming
environment that
you will use for your
class work.

8 Chapter 1 Introduction

Step 1

Figure 4
Running the
HelloPrinter
Program in an
Integrated
Development
Environment

Java program

Program output

Click to compile and run

Start the Java development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs.
On other computers you first launch an editor, a program that functions like a word
processor, in which you can enter your Java instructions; you then open a console
window and type commands to execute your program. You need to find out how to
get started with your environment.

Step 2 Write a simple program.

The traditional choice for the very first program in a new programming language is
a program that dis plays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” pro gram in Java:

public class HelloPrinter
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

We will examine this program in the next section.
No matter which programming environment you use, you begin your activity by

typing the program statements into an editor window.
Create a new file and call it HelloPrinter.java, using the steps that are appropriate

for your environ ment. (If your environment requires that you supply a project name
in addition to the file name, use the name hello for the project.) Enter the program
instructions exactly as they are given above. Alternatively, locate the electronic copy
in this book’s companion code and paste it into your editor.

An editor is a
program for entering
and modifying
text, such as a Java
program.

1.4 Becoming Familiar with Your Programming Environment 9

Figure 5
Running the HelloPrinter
Program in a Console Window

As you write this program, pay careful attention to the various symbols, and keep
in mind that Java is case sensitive. You must enter upper- and lowercase letters exactly
as they appear in the program listing. You cannot type MAIN or PrintLn. If you are not
careful, you will run into problems—see Common Error 1.2 on page 15.

Step 3 Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the
test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 4 and 5).
In order to run your program, the Java compiler translates your source files (that

is, the statements that you wrote) into class files. (A class file contains instructions for
the Java virtual machine.) After the compiler has translated your source code into
virtual machine instructions, the virtual machine executes them. During execution,
the virtual machine accesses a library of pre-written code, including the implementa-
tions of the System and PrintStream classes that are necessary for displaying the
program’s output. Figure 6 summarizes the process of creating and running a Java
program. In some programming environments, the compiler and virtual machine are
essentially invisible to the programmer—they are automatically executed whenever
you ask to run a Java program. In other environments, you need to launch the com-
piler and virtual machine explicitly.

Step 4 Organize your work.

As a programmer, you write programs, try them out, and improve them. You store
your programs in files. Files are stored in folders or directories. A folder can contain

Java is case sensitive.
You must be careful
about distinguishing
between upper- and
lowercase letters.

The Java compiler
translates source
code into class
files that contain
instructions for the
Java virtual machine.

Figure 6
From Source Code
to Running Program

CompilerEditor Virtual
Machine

Running
ProgramSource File

Class �les

Library �les

