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Class Declaration

public class BankAccount
{
   private double balance;
   private int transactions;
   
   public BankAccount(double initialBalance)
   {
      balance = initialBalance;
      transactions = 1;
   }
   
   public void deposit(double amount)
   {
      balance = balance + amount;
      transactions++;
   }
   . . .
}

Method

Instance variables

do
{
   System.out.print("Enter a positive integer: ");
   input = in.nextInt();
} 
while (input <= 0);

for (double value : values)
{
   sum = sum + value;
}

An array or collection 

Executed for each element

Loop body executed 
at least once

Set to a new element in each iteration

Executed while 
condition is true

Condition

Initialization   Condition   Update

Loop Statements

while (balance < TARGET)
{
   year++;
   balance = balance * (1 + rate / 100);
}

for (int i = 0; i < 10; i++)
{
   System.out.println(i);
}

Selected Operators and Their Precedence
(See Appendix B for the complete list.)

[]         Array element access
++ -- !    Increment, decrement, Boolean not
* / %      Multiplication, division, remainder
+ -        Addition, subtraction
< <= > >=  Comparisons
== !=      Equal, not equal
&&         Boolean and
||         Boolean or
=          Assignment

String Operations

String s = "Hello";
int n = s.length(); // 5
char ch = s.charAt(1); // 'e'
String t = s.substring(1, 4); // "ell"
String u = s.toUpperCase(); // "HELLO"
if (u.equals("HELLO")) ... // Use equals, not ==
for (int i = 0; i < s.length(); i++)
{
   char ch = s.charAt(i);
   Process ch
}

Mathematical Operations

Math.pow(x, y)   Raising to a power   xy 
Math.sqrt(x)     Square root      x
Math.log10(x)    Decimal log   log10(x)
Math.abs(x)      Absolute value   |x|
Math.sin(x)

Math.cos(x)      Sine, cosine, tangent of x  (x in radians)
Math.tan(x)

Variable and Constant Declarations

int cansPerPack = 6;

final double CAN_VOLUME = 0.335;

Type       Name       Initial value

Parameter
type and name

Exits method and 
returns result.

Return typeModi�ers

Method Declaration

public static double cubeVolume(double sideLength)
{
   double volume = sideLength * sideLength * sideLength;
   return volume;
}

Conditional Statement

if (floor >= 13)
{
   actualFloor = floor - 1;
}
else if (floor >= 0)
{
   actualFloor = floor;
}
else
{
   System.out.println("Floor negative");
}

Condition

Executed when condition is true

Second condition (optional)

Executed when 
all conditions are 
false (optional)

Constructor
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PREFACE

v

This book is an introduction to Java and computer programming that focuses on the 
essentials—and on effective learning. The book is designed to serve a wide range of 
student interests and abilities and is suitable for a first course in programming for 
computer scientists, engineers, and students in other disciplines. No prior program-
ming experience is required, and only a modest amount of high school algebra is 
needed. Here are the key features of this book:

Present fundamentals first.
The book takes a traditional route, first stressing control structures, methods, pro-
cedural decomposition, and arrays. Objects are used when appropriate in the early 
chapters. Students start designing and implementing their own classes in Chapter 8.

Guidance and worked examples help students succeed. 
Beginning programmers often ask “How do I start? Now what do I do?” Of course, 
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence 
and providing an outline for the task at hand. “Problem Solving” sections stress the 
importance of design and planning. “How To” guides help students with common 
programming tasks. Additional Worked Examples and Video Examples are available 
online.

Problem solving strategies are made explicit.
Practical, step-by-step illustrations of techniques help students devise and evaluate 
solutions to programming problems. Introduced where they are most relevant, these 
strategies address barriers to success for many students. Strategies included are:

• Algorithm Design (with pseudocode)
• Tracing Objects
• First Do It By Hand (doing sample calculations by hand)
• Flowcharts
• Selecting Test Cases
• Hand-Tracing
• Storyboards
• Solve a  Simpler Problem First
• Adapting Algorithms 
• Discovering Algorithms by Manipulating Physical Objects
• Patterns for Object Data
• Estimating the Running Time of an Algorithm

Practice makes perfect. 
Of course, programming students need to be able to implement nontrivial programs, 
but they first need to have the confidence that they can succeed. This book contains 
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a substantial number of self-check questions at the end of each section. “Practice It” 
pointers suggest exercises to try after each section. And additional practice oppor-
tunities, including code completion questions and skill-oriented multiple-choice 
questions, are available online.

A visual approach motivates the reader and eases navigation. 
Photographs present visual analogies that explain the 
nature and behavior of computer concepts. Step-by-
step figures illustrate complex program operations. 
Syntax boxes and example tables present a variety 
of typical and special cases in a compact format. It 
is easy to get the “lay of the land” by browsing the 
visuals, before focusing on the textual material.

Focus on the essentials while being 
technically accurate. 
An encyclopedic coverage is not helpful for a begin-
ning programmer, but neither is the opposite—
reducing the material to a list of simplistic bullet points. In this book, the essentials 
are presented in digestible chunks, with separate notes that go deeper into good prac-
tices or language features when the reader is ready for the additional information. 
You will not find artificial over-simplifications that give an illusion of knowledge. 

Reinforce sound engineering practices.
A multitude of useful tips on software quality and common errors encourage the 
development of good programming habits. The focus is on test-driven development, 
encouraging students to test their programs systematically.

Engage with optional science and business exercises.
End-of-chapter exercises are enhanced with problems from scientific and business 
domains. Designed to engage students, the exercises illustrate the value of program-
ming in applied fields. 

New to This Edition
Updated for Java 8
Java 8 introduces many exciting features, and this edition has been updated to take 
advantage of them. Interfaces can now have default and static methods, and lambda 
expressions make it easy to provide instances of interfaces with a single method. 
The sections on interfaces and sorting have been updated to make these innovations 
optionally available. 

In addition, Java 7 features such as the try-with-resources statement are now inte-
grated into the text. 

© Terraxplorer/iStockphoto.

Visual features help the reader  
with navigation.
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Optional JavaFX Coverage
For those who prefer to use JavaFX instead of Swing, there is a new online resource 
that covers graphical user-interface programming with JavaFX.

Interactive Learning
Additional interactive content is available that integrates with this text and immerses 
students in activities designed to foster in-depth learning. Students don’t just watch 
animations and code traces, they work on generating them. The activities provide 
instant feedback to show students what they did right and where they need to study 
more. To find out more about how to make this content available in your course, visit 
http://wiley.com/go/bjlo2interactivities.

“CodeCheck” is an innovative online service that students can use to work on pro-
gramming problems. You can assign exercises that have already been prepared, and 
you can easily add your own. Visit http://codecheck.it to learn more and to try it out.
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 A Tour of the Book
This book is intended for a two-semester introduction to programming that may also 
include algorithms, data structures, and/or applications.

Part A: Fundamentals (Chapters 1–7)
The first seven chapters follow a traditional approach to basic programming concepts. 
Students learn about control structures, stepwise refinement, and arrays. Objects 
are used only for input/output and string processing. Input/output is covered in 

Figure 1 Chapter Dependencies

9. Inheritance 
and Interfaces

12. Object-
Oriented Design

13. Recursion

14. Sorting 
and Searching

15. The Java 
Collections 
Framework

6. Iteration

8. Objects and 
Classes

Fundamentals

Object-Oriented Design

Graphical User Interfaces

Data Structures & Algorithms

Online Chapters

10. Graphical
User Interfaces

1. Introduction

2. Fundamental 
Data Types

3. Decisions

4. Loops

5. Methods

6. Arrays 
and Array Lists

7. Input/Output
and Exception

Handling

11. Advanced 
User Interfaces

A gentle 
introduction to recursion 

is optional.

Sections 7.1 and 7.2
(text �le processing) can be 

covered with Chapter 4.
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Chapter 7, but Sections 7.1 and 7.2 can be covered with Chapter 4; in that way, stu-
dents can practice writing loops that process text files. Chapter 4 also provides an 
optional introduction to programming drawings that consist of lines, rectangles, and 
ovals, with an emphasis on reinforcing loops.

Part B: Object-Oriented Design and Graphics (Chapters 8–12)
After students have gained a solid foundation, they are ready to tackle the implemen-
tation of classes in Chapter 8. Chapter 9 covers inheritance and interfaces. A simple 
methodology for object-oriented design is presented in Chapter 12. Object-oriented 
design may also be covered immediately after Chapter 9 by omitting the GUI ver-
sions of the sample programs. By the end of these chapters, students will be able to 
implement programs with multiple interacting classes.

Graphical user interfaces are presented in Chapters 10 and 11. The first of these 
chapters enables students to write programs with buttons, text components, and 
simple drawings. If you want to go deeper, you will find layout management and 
additional user-interface components in the second chapter. Online versions of these 
chapters cover JavaFX instead of Swing.

Part C: Data Structures and Algorithms (Chapters 13–15)
Chapters 13–15 cover algorithms and data structures at a level suitable for beginning 
students. Recursion, in Chapter 13, starts with simple examples and progresses to 
meaningful applications that would be difficult to implement iteratively. Chapter 14 
covers quadratic sorting algorithms as well as merge sort, with an informal introduc-
tion to big-Oh notation. In Chapter 15, the Java Collections Framework is presented 
from the perspective of a library user, without revealing the implementations of lists 
and maps. You can cover this chapter anytime after Chapter 8. Chapters 11–15 are 
available in electronic form on the Web.

Any subset of these chapters can be incorporated into a custom print version of 
this text; ask your Wiley sales representative for details. 

Appendices
Many instructors find it highly beneficial to require a consistent style for all assign-
ments. If the style guide in Appendix E conflicts with instructor sentiment or local 
customs, however, it is available in electronic form so that it can be modified. Appen-
dices E–J are available on the Web.

A. The Basic Latin and Latin-1 Subsets of Unicode
B. Java Operator Summary
C. Java Reserved Word Summary
D. The Java Library
E. Java Language Coding Guidelines 
F. Tool Summary 
G. Number Systems 
H. UML Summary 
I. Java Syntax Summary 
J. HTML Summary 
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Custom Book and eBook Options
Java Concepts may be ordered in both custom print and eBook formats. You can 
order a custom print version that includes your choice of chapters—including those 
from other Horstmann titles. Visit customselect.wiley.com to create your custom order. 

Java Concepts is also available in an electronic eBook format with three key 
advantages:

• The price is signifcantly lower than for the printed book.
• The eBook contains all material in the printed book plus the web chapters and 

worked examples in one easy-to-browse format.
• You can customize the eBook to include your choice of chapters.

The interactive edition of Java Concepts adds even more value by integrating a wealth 
of interactive exercises into the eBook. See http://wiley.com/go/bjlo2interactivities to 
find out more about this new format.

Please contact your Wiley sales rep for more information about any of these 
options or check www.wiley.com/college/horstmann for available versions.

Web Resources
This book is complemented by a complete suite of online resources. Go to www.wiley.
com/college/horstmann to visit the online companion sites, which include

• Source code for all example programs in the book and its Worked Examples and 
Video Examples, plus additional example programs.

• Worked Examples that apply the problem-solving steps in the book to other 
realistic examples.

• Video Examples in which the author explains the steps he is taking and shows his 
work as he solves a programming problem.

• Lecture presentation slides (for instructors only).
• Solutions to all review and programming exercises (for instructors only).
• A test bank that focuses on skills, not just terminology (for instructors only). This 

extensive set of multiple-choice questions can be used with a word processor or 
imported into a course management system.

• “CodeCheck” assignments that allow students to work on programming prob-
lems presented in an innovative online service and receive immediate feedback. 
Instructors can assign exercises that have already been prepared, or easily add 
their own. Visit http://codecheck.it to learn more. 

WORKED EXAMPLE 4.1 Credit Card Processing

Learn how to use a loop to remove spaces from a credit card 
number. Go to wiley.com/go/bjlo2examples  and download 
Worked Example 4.1.

VIDEO EXAMPLE 1.1 Compiling and Running a Program

See a demonstration of how to compile and run a simple Java pro-
gram. Go to wiley.com/go/bjlo2videos to view Video Example 1.1.

FULL CODE EXA

Go to wiley.com/go/
bjlo2code   to download 
a program that dem-
onstrates variables 
and assignments. 

MPLE

Pointers in the book 
describe what students
will �nd on the Web.
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A Walkthrough of the Learning Aids
The pedagogical elements in this book work together to focus on and reinforce key 
concepts and fundamental principles of programming, with additional tips and detail 
organized to support and deepen these fundamentals. In addition to traditional 
features, such as chapter objectives and a wealth of exercises, each chapter contains 
elements geared to today’s visual learner.

FULL CODE EXAMPLE

Go to wiley.com/go/
bjlo2code     to download 
a program that 
uses common loop 
algorithms.

Additional full code examples 
provides complete programs for 
students to run and modify.

150 Chapter 4  Loops

4.3 The for Loop
It often happens that you want to execute a sequence of statements a given number 
of times. You can use a while loop that is controlled by a counter, as in the following 
example: 

int counter = 1; // Initialize the counter
while (counter <= 10) // Check the counter
{
   System.out.println(counter);
   counter++; // Update the counter 
}

Because this loop type is so common, there is a spe-
cial form for it, called the for loop (see Syntax 4.2). 

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Some people call this loop count-controlled. In con-
trast, the while loop of the preceding section can be 
called an event-controlled loop because it executes 
until an event occurs; namely that the balance reaches 
the target. Another commonly used term for a 
count-controlled loop is definite. You know from 
the outset that the loop body will be executed a 
definite number of times; ten times in our example. 
In contrast, you do not know how many iterations it 
takes to accumulate a target balance. Such a loop is 
called indefinite.

The for loop is 
used when a  
value runs from a 
starting point to an 
ending point with a  
constant increment 
or decrement. 

You can visualize the for loop as 
an orderly sequence of steps. 

Syntax 4.2 for Statement

Throughout each chapter, 
margin notes show where 
new concepts are introduced 
and provide an outline of key ideas. 

Annotations explain required 
components and point to more 
information on common errors 
or best practices associated 
with the syntax.

Annotated syntax boxes 
provide a quick, visual overview 
of new language constructs.

Like a variable in a computer 
program, a parking space has 
an identifier and a contents. 

Analogies to everyday objects are 
used to explain the nature and behavior 
of concepts such as variables, data 
types, loops, and more.

for (int i = 5; i <= 10; i++)
{
   sum = sum + i;
}

This loop executes 6 times. 
    See Programming Tip 4.3.

This initialization 
happens once 
before the loop starts.

The condition is 
checked before 
each iteration.

This update is 
executed after 
each iteration.

The variable i 
is de�ned only in this 

for loop. 

These three 
expressions should be related.

        See Programming Tip 4.1.

for (initialization; condition; update)
{
   statements
}

Syntax
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A recipe for a fruit pie may say to use any kind of fruit.  
Here, “fruit” is an example of a parameter variable.  
Apples and cherries are examples of arguments.

pie(fruit) pie(fruit)

6.5 Problem Solving: Discovering Algorithms by Manipulating Physical Objects  277

Now how does that help us with our problem, switching the first and the second 
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as 
Java programmers, we will say that we swap the coins in positions 0 and 4:  

  

  

 
 
 

Problem Solving sections teach 
techniques for generating ideas and 
evaluating proposed solutions, often
using pencil and paper or other 
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

   

Next, we swap the coins in positions 1 and 5: 

  

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:
• purchase price1  and fuel ef�ciency1 , the price and fuel efficiency (in mpg) of the first car
• purchase price2  and fuel ef�ciency2, the price and fuel efficiency of the second car
We simply want to know which car is the better buy. That is the desired output.

HOW TO 1.1 Describing an Algorithm with Pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Java, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in
pseudocode: a sequence of precise steps formulated in English. 

For example, consider this problem: You have the choice of
buying two cars. One is more fuel efficient than the other, but
also more expensive. You know the price and fuel efficiency (in
miles per gallon, mpg) of both cars. You plan to keep the car for
ten years. Assume a price of $4 per gallon of gas and usage of
15,000 miles per year. You will pay cash for the car and not
worry about financing costs. Which car is the better deal? 

How To guides give step-by-step 
guidance for common programming 
tasks, emphasizing planning and 
testing. They answer the beginner’s 
question, “Now what do I do?” and 
integrate key concepts into a 
problem-solving sequence.

Table 1  Variable Declarations in Java

tnemmoCemaN elbairaV

int cans = 6; Declares an integer variable and initializes it with 6.

int total = cans + bottles; The initial value need not be a constant. (Of course, cans and bottles 
must have been previously declared.)

bottles = 1; Error: The type is missing. This statement is not a declaration but an 
assignment of a new value to an existing variable—see Section 2.1.4. 

int bottles = "10"; Error: You cannot initialize a number with a string.

int bottles; Declares an integer variable without initializing it. This can be a 
cause for errors—see Common Error 2.1 on page 37.

int cans, bottles; Declares two integer variables in a single statement. In this book, we 
will declare each variable in a separate statement.

Memorable photos reinforce 
analogies and help students 
remember the concepts.

WORKED EXAMPLE 1.1 Writing an Algorithm for Tiling a Floor

This Worked Example shows how to develop an algorithm for laying
tile in an alternating pattern of colors. 

Example tables support beginners 
with multiple, concrete examples. 
These tables point out common 
errors and present another quick 
reference to the section’s topic.

Worked Examples and 
Video Examples apply the 
steps in the How To to a 
di�erent example, showing 
how they can be used to 
plan, implement, and test 
a solution to another 
programming problem.
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• 

Figure 3 Parameter Passing

1 Method call result1 =

sideLength =

2 Initializing method parameter variable result1 =

sideLength = 2

3 About to return to the caller result1 =

sideLength =

volume = 8

2

4 After method  call result1 = 8

double result1 = cubeVolume(2);

double volume = sideLength * sideLength * sideLength;
return volume;

double result1 = cubeVolume(2);

double result1 = cubeVolume(2);

The parameter variable sideLength of the cubeVolume method is created when the 
method is called.  1

• The parameter variable is initialized with the value of the argument that was 
passed in the call. In our case, sideLength is set to 2.  2  

• The method computes the expression sideLength * sideLength * sideLength, which 
has the value 8. That value is stored in the variable volume.  3

• The method returns. All of its variables are removed. The return value is trans-
ferred to the caller, that is, the method calling the cubeVolume method. The caller 
puts the return value in the result1 variable.  4    

11. Write the for loop of the InvestmentTable.java program as a while loop.
12. How many numbers does this loop print?

for (int n = 10; n >= 0; n--)
{

System.out.println(n);
}

13. Write a for loop that prints all even numbers between 10 and 20 (inclusive).
14. Write a for loop that computes the sum of the integers from 1 to n.
15. How would you modify the for loop of the InvestmentTable.java program to

print all balances until the investment has doubled?

Practice It Now you can try these exercises at the end of the chapter: R4.7, R4.13, E4.8, E4.16.

S E L F  C H E C K

Figure 3
Execution of 
a for Loop

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Initialize counter1

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Check condition2

for (int counter = 1; counter <= 10; counter++)
{

System.out.println(counter);
}

Execute loop body3

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Update counter4

for (int counter = 1; counter <= 10; counter++)
{
   System.out.println(counter);
}

Check condition again5

counter = 1

counter = 1

counter = 1

counter = 2

counter = 2

Progressive �gures trace code 
segments to help students visualize 
the program �ow. Color is used 
consistently to make variables and 
other elements easily recognizable.

sec01/DoubleInvestment.java

1 /**
2 This program computes the time required to double an investment.
3 */
4 public class DoubleInvestment
5 {
6 public static void main(String[] args)
7    { 
8 final double RATE = 5;
9 final double INITIAL_BALANCE = 10000;

10 final double TARGET = 2 * INITIAL_BALANCE;
11
12 double balance = INITIAL_BALANCE;
13 int year = 0;
14
15       // Count the years required for the investment to double
16
17 while (balance < TARGET)
18       { 
19          year++;
20 double interest = balance * RATE / 100;
21          balance = balance + interest;
22       }
23
24       System.out.println("The investment doubled after "
25          + year + " years.");
26    }
27 }

Self-check exercises at the 
end of each section are designed 
to make students think through 
the new material—and can  
spark discussion in lecture.

Optional science and business 
exercises engage students with 
realistic applications of Java.

•• Science P6.13 Sounds can be represented by an array of “sample 
val ues” that describe the intensity of the sound at a 
point in time. The program ch06/sound/SoundEffect.
java reads a sound file (in WAV format), calls a 
method process for processing the sample values, and 
saves the sound file. Your task is to implement the 
process method by introducing an echo. For each 
sound value, add the value from 0.2 seconds ago. 
Scale the result so that no value is larger than 32767. •• Business P9.6  Implement a superclass Appointment and sub-

classes Onetime, Daily, and Monthly. An appoint-
ment has a description (for example, “see the 
dentist”) and a date and time. Write a method 
occursOn(int year, int month, int day) that checks 
whether the appointment occurs on that date. 
For example, for a monthly appointment, you 
must check whether the day of the month 
matches. Then fill an array of Appointment objects 
with a mixture of appointments. Have the user enter a date and print out all appoint-
ments that occur on that date.

Program listings are carefully 
designed for easy reading, 
going well beyond simple 
color coding. Methods are set 
o� by a subtle outline. 
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Length and Size

Unfortunately, the Java syntax for
determining the number of elements
in an array, an array list, and a string
is not at all consistent. It is a com-
mon error to confuse these. You just
have to remember the correct syntax
for every data type.

Common Error 6.4

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

Common Errors describe the kinds 
of errors that students often make, 
with an explanation of why the errors 
occur, and what to do about them. 

Hand-Tracing

A very useful technique for understanding whether a pro-
gram works correctly is called hand-tracing. You simulate 
the program’s activity on a sheet of paper. You can use this 
method with pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet 
of paper is within reach. Make a column for each variable. 
Have the program code ready. Use a marker, such as a 
paper clip, to mark the current statement. In your mind, 
execute statements one at a time. Every time the value of a 
variable changes, cross out the old value and write the new 
value below the old one. 

For example, let’s trace the getTax method with the data 
from the program run above.

When the TaxReturn object is constructed, the income
instance variable is set to 80,000 and status is set to MARRIED.  Then the getTax method is called. 
In lines 31 and 32 of TaxReturn.java, tax1 and tax2 are initialized to 0. 
29 public double getTax()
30 {  
31 double tax1 = 0;
32 double tax2 = 0;
33

Programming Tip 3.5

Hand-tracing helps you  
understand whether a  
program works correctly.

income status tax1 tax2

 80000 MARRIED 0 0

Because status is not SINGLE, we move to the else
 branch of the outer if statement (line 46).
34    if (status == SINGLE)
35    {
36       if (income <= RATE1_SINGLE_LIMIT)
37       {
38          tax1 = RATE1 * income;
39       }
40       else
41       {
42          tax1 = RATE1 * RATE1_SINGLE_LIMIT;
43          tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
44       }
45    }
46 else
47    {  

File Dialog Boxes

In a program with a graphical user interface, you will want to use a file dialog box (such as the 
one shown in the figure below) whenever the users of your program need to pick a file. The 
JFileChooser class implements a file dialog box for the Swing user-interface toolkit. 

The JFileChooser class has many options to fine-tune the display of the dialog box, but in its 
most basic form it is quite simple: Construct a file chooser object; then call the showOpenDialog
or showSaveDialog method. Both methods show the same dialog box, but the button for select-
ing a file is labeled “Open” or “Save”, depending on which method you call. 

For better placement of the dialog box on the screen, you can specify the user-interface 
component over which to pop up the dialog box. If you don’t care where the dialog box pops 
up, you can simply pass null. The showOpenDialog and showSaveDialog methods return either 
JFileChooser.APPROVE_OPTION, if the user has chosen a file, or JFi leChooser.CANCEL_OPTION, if the 
user canceled the selection. If a file was chosen, then you call the getSelectedFile method to 
obtain a File object that describes the file. Here is a complete example: 

JFileChooser chooser = new JFileChooser();
Scanner in = null;
if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)
{

File selectedFile = chooser.getSelectedFile();
in = new Scanner(selectedFile);
. . .

}

Special Topic 7.2

A JFileChooser Dialog Box

Button is “Save” when 
showSaveDialog method 

is called

Programming Tips explain 
good programming practices, 
and encourage students to be 
more productive with tips and 
techniques such as hand-tracing.

Special Topics present optional 
topics and provide additional 
explanation of others.  

Lambda Expressions

In the preceding section, you saw how to use interfaces for specifying variations in behavior. 
The average method needs to measure each object, and it does so by calling the measure method 
of the supplied Measurer object.

Unfortunately, the caller of the average method has to do a fair amount of work; namely, 
to de�ne a class that implements the Measurer interface and to construct an object of that class. 
Java 8 has a convenient shortcut for these steps, provided that the interface has a single abstract 
method. Such an interface is called a functional interface because its purpose is to de�ne a 
single function. The Measurer interface is an example of a functional interface.

To specify that single function, you can use a lambda expression, an expression that de�nes 
the parameters and return value of a method in a compact notation. Here is an example:

(Object obj) -> ((BankAccount) obj).getBalance()

This expression de�nes a function that, given an object, casts it to a BankAccount and returns the 
balance. 

(The term “lambda expression” comes from a mathematical notation that uses the Greek 
letter lambda (λ) instead of the -> symbol. In other programming languages, such an expres-
sion is called a function expression.)

A lambda expression cannot stand alone. It needs to be assigned to a variable whose type is 
a functional interface:

Measurer accountMeas = (Object obj) -> ((BankAccount) obj).getBalance();

Java 8 Note 9.3  

When computers 
were first invented 

in the 1940s, a computer filled an 
entire room. The photo below shows 
the ENIAC (electronic numerical inte-
grator and computer), completed in 
1946 at the University of Pennsylvania. 
The ENIAC was used by the military 
to compute the trajectories of projec-
tiles. Nowadays, computing facilities 
of search engines, Internet shops, and 
social networks fill huge buildings 
called data centers. At the other end of 
the spectrum, computers are all around 
us. Your cell phone has a computer 
inside, as do many credit cards and fare 
cards for public transit. A modern car 
has several computers––to control the 
engine, brakes, lights, and the radio. 

This transit card contains a computer.

The advent of ubiqui-
tous computing changed 
many aspects of our 
lives. Factories used 
to employ people to 
do repetitive assembly 
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people 
who know how to work 
with those computers. 
Books, music, and mov-
ies are nowadays often 
consumed on com-
puters, and comput-
ers are almost always 
involved in their production. The 
book that you are reading right now 

could not have been written without 
computers.

Computing & Society 1.1 Computers Are Everywhere

Computing & Society presents social 
and historical topics on computing—for 
interest and to ful�ll the “historical and 
social context” requirements of the 
ACM/IEEE curriculum guidelines.

Java 8 Notes provide detail 
about new features in Java 8.  
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2

Just as you gather tools, study a project, and make a plan for 
tackling it, in this chapter you will gather up the basics you 
need to start learning to program. After a brief introduction 
to computer hardware, software, and programming in 
general, you will learn how to write and run your first 
Java program. You will also learn how to diagnose and 
fix programming errors, and how to use pseudocode to 
describe an algorithm—a step-by-step description of how 
to solve a problem—as you plan your computer programs.

1.1 Computer Programs
You have probably used a computer for work or fun. Many people use computers 
for everyday tasks such as electronic banking or writing a term paper. Computers are 
good for such tasks. They can handle repetitive chores, such as totaling up numbers 
or placing words on a page, without getting bored or exhausted. 

The flexibility of a computer is quite an amazing phenomenon. The same machine 
can balance your checkbook, lay out your term paper, and play a game. In contrast, 
other machines carry out a much nar rower range of tasks; a car drives and a toaster 
toasts. Computers can carry out a wide range of tasks because they execute different 
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs. 
A computer program tells a computer, in minute detail, the sequence of steps that are 
needed to fulfill a task. The physical computer and periph eral devices are collectively 
called the hardware. The programs the computer executes are called the soft ware. 

Today’s computer programs are so sophisticated that it is hard to believe that they 
are composed of extremely primitive instructions. A typical instruction may be one 
of the following:

• Put a red dot at a given screen position.
• Add up two numbers.
• If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains 
a huge number of such instructions, and because the computer can execute them at 
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct 
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor 
that supports fancy fonts and pictures is a complex task that requires a team of many 
highly-skilled programmers. Your first programming efforts will be more mundane. 
The concepts and skills you learn in this book form an important foundation, and 
you should not be disappointed if your first programs do not rival the sophis ticated 
software that is familiar to you. Actually, you will find that there is an immense thrill 
even in sim ple programming tasks. It is an amazing experience to see the computer 
precisely and quickly carry out a task that would take you hours of drudgery, to 

Computers 
execute very basic 
instructions in  
rapid succession. 

A computer program 
is a sequence  
of instructions  
and decisions.

Programming is the 
act of designing 
and implementing 
computer programs.

© JanPietruszka/iStockphoto.
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make small changes in a program that lead to immediate improvements, and to see the 
computer become an extension of your mental powers.

1. What is required to play music on a computer? 
2. Why is a CD player less flexible than a computer? 
3. What does a computer user need to know about programming in order to play a 

video game?

1.2 The Anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal 
computer. Larger computers have faster, larger, or more powerful components, but 
they have fundamentally the same design.

At the heart of the computer lies the central 
processing unit (CPU) (see Figure 1). The inside 
wiring of the CPU is enormously complicated. 
For example, the Intel Core processor (a popular 
CPU for per sonal computers at the time of this 
writing) is composed of several hundred million 
structural elements, called transistors.

The CPU performs program control and 
data processing. That is, the CPU locates and 
executes the program instructions; it carries out 
arithmetic operations such as addition, subtrac-
tion, multiplication, and division; it fetches data 
from external memory or devices and places 
processed data into storage. 

There are two kinds of storage. Primary stor-
age, or memory, is made from electronic circuits that can store data, provided they are 
supplied with electric power. Secondary storage, usually a hard disk (see Figure 2) 

© Nicholas Homrich/iStockphoto.

S E L F  C H E C K

© Amorphis/iStockphoto.

Figure 1 Central Processing Unit

The central 
processing unit (CPU) 
performs program 
control and  
data processing.

Storage devices 
include memory and 
secondary storage.

Figure 2 A Hard Disk
© PhotoDisc, Inc./Getty Images, Inc.
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4 Chapter 1  Introduction

or a solid-state drive, provides slower and less expensive storage that persists without 
electricity. A hard disk consists of rotating platters, which are coated with a mag netic 
material. A solid-state drive uses electronic components that can retain information 
without power, and without moving parts.

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits infor mation (called output) to the user through a display screen, 
speakers, and printers. The user can enter information (called input) for the computer 
by using a keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected 
through networks. Through the network cabling, the computer can read data and 
programs from central storage locations or send data to other computers. To the user 
of a networked computer, it may not even be obvious which data reside on the com-
puter itself and which are transmitted through the network. 

Figure 3 gives a schematic overview of the architecture of a personal computer. 
Program instructions and data (such as text, numbers, audio, or video) reside in sec-
ondary storage or elsewhere on the network. When a program is started, its instruc-
tions are brought into memory, where the CPU can read them. The CPU reads and 
executes one instruction at a time. As directed by these instructions, the CPU reads 
data, modifies it, and writes it back to memory or secondary storage. Some program 
instruc tions will cause the CPU to place dots on the display screen or printer or to 
vibrate the speaker. As these actions happen many times over and at great speed, the 
human user will perceive images and sound. Some program instructions read user 
input from the keyboard, mouse, touch sensor, or microphone. The program ana-
lyzes the nature of these inputs and then executes the next appropriate instruction.

Figure 3 Schematic Design of a Personal Computer
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4. Where is a program stored when it is not currently running?

5. Which part of the computer carries out arithmetic operations, such as addition 
and multiplication?

6. A modern smartphone is a computer, comparable to a desktop computer. Which 
components of a smartphone correspond to those shown in Figure 3?

Practice It Now you can try these exercises at the end of the chapter: R1.2, R1.3.

Computing & Society 1.1 Computers Are Everywhere

© Nicholas Homrich/iStockphoto.
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When computers 
were first invented 

in the 1940s, a computer filled an 
entire room. The photo below shows 
the ENIAC (electronic numerical inte-
grator and computer), completed in 
1946 at the University of Pennsylvania. 
The ENIAC was used by the military to 
compute the trajectories of projectiles. 
Nowadays, computing facilities of 
search engines, Internet shops, and 
social networks fill huge buildings 
called data centers. At the other end of 
the spectrum, computers are all around 
us. Your cell phone has a computer 
inside, as do many credit cards and fare 
cards for public transit. A modern car 
has several computers––to control the 
engine, brakes, lights, and the radio.  

The advent of ubiqui-
tous computing changed 
many aspects of our 
lives. Factories used 
to employ people to 
do repetitive assembly 
tasks that are today 
carried out by computer-
controlled robots, oper-
ated by a few people 
who know how to work 
with those computers. 
Books, music, and mov-
ies nowadays are often 
consumed on comput-
ers, and computers are 
almost always involved 
in their production. The book that you 
are reading right now could not have 

been written without computers.
Knowing about computers and 

how to program them has become 
an essential skill in many careers. 
Engineers design computer-controlled 
cars and medical equipment that 
preserve lives. Computer scientists 
develop programs that help people 
come together to support social 
causes. For example, activists used 
social networks to share videos 
showing abuse by repressive regimes, 
and this information was instrumental 
in changing public opinion.

As computers, large and small, 
become ever more embedded in our 
everyday lives, it is increasingly impor-
tant for everyone to understand how 
they work, and how to work with them. 
As you use this book to learn how to 
program a computer, you will develop 
a good understanding of computing 
fundamentals that will make you a 
more informed citizen and, perhaps,  
a computing professional.

© Media Bakery.

© Maurice Savage/Alamy Limited.
This transit card contains a computer.

© UPPA/Photoshot.
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1.3 The Java Programming Language
In order to write a computer program, you need to provide a sequence of instructions 
that the CPU can execute. A computer program consists of a large number of simple 
CPU instructions, and it is tedious and error-prone to specify them one by one. For 
that reason, high-level programming languages have been created. In a high-level 
language, you specify the actions that your program should carry out. A compiler 
translates the high-level instructions into the more detailed instructions (called 
machine code)required by the CPU. Many different programming languages have 
been designed for different purposes. 

In 1991, a group led by James Gosling and Patrick Naughton at Sun Microsystems 
designed a programming language, code-named “Green”, for use in consumer 
devices, such as intelligent television “set-top” boxes. The language was designed to 
be simple, secure, and usable for many dif ferent processor types. No customer was 
ever found for this technology.

Gosling recounts that in 1994 the team realized, 
“We could write a really cool browser. It was one 
of the few things in the client/server main stream 
that needed some of the weird things we’d done: 
architecture neu tral, real-time, reliable, secure.” 
Java was introduced to an enthusiastic crowd at 
the SunWorld exhibition in 1995, together with a 
browser that ran applets—Java code that can be 
located anywhere on the Internet. The figure at 
right shows a typical example of an applet. 

Since then, Java has grown at a phenomenal rate. 
Programmers have embraced the language because 
it is easier to use than its closest rival, C++. In addition, Java has a rich library that 
makes it possible to write portable programs that can bypass proprietary operating 
systems—a feature that was eagerly sought by those who wanted to be independent 
of those proprietary systems and was bitterly fought by their ven dors. A “micro edi-
tion” and an “enterprise edition” of the Java library allow Java programmers to target 
hardware ranging from smart cards to the largest Internet servers. 

Because Java was designed for the Internet, it has two attributes that make it very 
suitable for begin ners: safety and portability. 

Table 1  Java Versions (since Version 1.0 in 1996)

Version Year Important New Features Version Year Important New Features

1.1 1997 Inner classes 5 2004 Generic classes, enhanced for loop, 
auto-boxing, enumerations, 

annotations

1.2 1998 Swing, Collections framework 6 2006 Library improvements

1.3 2000 Performance enhancements 7 2011 Small language changes and library 
improvements

1.4 2002 Assertions, XML support 8 2014 Function expressions, streams, new 
date/time library

© James Sullivan/Getty Images.

James Gosling

An Applet for Visualizing Molecules

Java was originally 
designed for 
programming 
consumer devices, 
but it was first 
successfully used 
to write Internet 
applets.

Java was designed to 
be safe and portable, 
benefiting both 
Internet users  
and students.
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Java was designed so that anyone can execute programs in their browser without 
fear. The safety features of the Java language ensure that a program is terminated if it 
tries to do something unsafe. Having a safe environment is also helpful for anyone 
learning Java. When you make an error that results in unsafe behavior, your program 
is terminated and you receive an accurate error report. 

The other benefit of Java is portability. The same Java program will run, without 
change, on Windows, UNIX, Linux, or Macintosh. In order to achieve portability, 
the Java compiler does not translate Java programs directly into CPU instructions. 
Instead, compiled Java programs contain instructions for the Java virtual machine, 
a program that simulates a real CPU. Portability is another benefit for the begin ning 
student. You do not have to learn how to write programs for different platforms.

At this time, Java is firmly established as one of the most important languages for 
general-purpose pro gramming as well as for computer science instruction. However, 
although Java is a good language for beginners, it is not perfect, for three reasons.

Because Java was not specifically designed for students, no thought was given to 
making it really sim ple to write basic programs. A certain amount of technical machin-
ery is necessary to write even the simplest programs. This is not a problem for pro-
fessional programmers, but it can be a nuisance for beginning students. As you learn 
how to program in Java, there will be times when you will be asked to be satisfied with 
a preliminary explanation and wait for more complete detail in a later chapter.

Java has been extended many times during its life—see Table 1. In this book, we 
assume that you have Java version 7 or later.

Finally, you cannot hope to learn all of Java in one course. The Java language itself 
is relatively simple, but Java contains a vast set of library packages that are required 
to write useful programs. There are pack ages for graphics, user-interface design, 
cryptography, networking, sound, database storage, and many other purposes. Even 
expert Java programmers cannot hope to know the contents of all of the packages—
they just use those that they need for particular projects. 

Using this book, you should expect to learn a good deal about the Java language 
and about the most important packages. Keep in mind that the central goal of this 
book is not to make you memorize Java minutiae, but to teach you how to think 
about programming.  

7. What are the two most important benefits of the Java language? 
8. How long does it take to learn the entire Java library?

Practice It Now you can try this exercise at the end of the chapter: R1.5.

1.4 Becoming Familiar with Your 
Programming Environment

Many students find that the tools they need as programmers are very different from 
the software with which they are familiar. You should spend some time making your-
self familiar with your programming environment. Because computer systems vary 
widely, this book can only give an outline of the steps you need to follow. It is a good 
idea to participate in a hands-on lab, or to ask a knowledgeable friend to give you a tour.

Java programs 
are distributed as 
instructions for a 
virtual machine, 
making them 
platform-independent.

Java has a very 
large library. Focus 
on learning those 
parts of the library 
that you need for 
your programming 
projects.

© Nicholas Homrich/iStockphoto.

S E L F  C H E C K

Set aside time to 
become familiar with 
the programming 
environment that 
you will use for your 
class work. 
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Step 1 

Figure 4  
Running the  
HelloPrinter  
Program in an  
Integrated  
Development  
Environment

Java program

Program output

Click to compile and run

Start the Java development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs. 
On other computers you first launch an editor, a program that functions like a word 
processor, in which you can enter your Java instructions; you then open a console 
window and type commands to execute your program. You need to find out how to 
get started with your environment.

Step 2 Write a simple program.

The traditional choice for the very first program in a new programming language is 
a program that dis plays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” pro gram in Java:

public class HelloPrinter
{
   public static void main(String[] args)
   {  
      System.out.println("Hello, World!");
   }
}

We will examine this program in the next section. 
No matter which programming environment you use, you begin your activity by 

typing the program statements into an editor window. 
Create a new file and call it HelloPrinter.java, using the steps that are appropriate 

for your environ ment. (If your environment requires that you supply a project name 
in addition to the file name, use the name hello for the project.) Enter the program 
instructions exactly as they are given above. Alternatively, locate the electronic copy 
in this book’s companion code and paste it into your editor.

An editor is a 
program for entering 
and modifying 
text, such as a Java 
program.
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Figure 5  
Running the HelloPrinter  
Program in a Console Window

As you write this program, pay careful attention to the various symbols, and keep 
in mind that Java is case sensitive. You must enter upper- and lowercase letters exactly 
as they appear in the program listing. You cannot type MAIN or PrintLn. If you are not 
careful, you will run into problems—see Common Error 1.2 on page 15. 

Step 3 Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the 
test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 4 and 5).
In order to run your program, the Java compiler translates your source files (that 

is, the statements that you wrote) into class files. (A class file contains instructions for 
the Java virtual machine.) After the compiler has translated your source code into 
virtual machine instructions, the virtual machine executes them. During execution, 
the virtual machine accesses a library of pre-written code, including the implementa-
tions of the System and PrintStream classes that are necessary for displaying the 
program’s output. Figure 6 summarizes the process of creating and running a Java 
program. In some programming environments, the compiler and virtual machine are 
essentially invisible to the programmer—they are automatically executed whenever 
you ask to run a Java program. In other environments, you need to launch the com-
piler and virtual machine explicitly. 

Step 4 Organize your work.

As a programmer, you write programs, try them out, and improve them. You store 
your programs in files. Files are stored in folders or directories. A folder can contain 

Java is case sensitive. 
You must be careful 
about distinguishing 
between upper- and 
lowercase letters.

The Java compiler 
translates source 
code into class 
files that contain 
instructions for the 
Java virtual machine.

Figure 6  
From Source Code  
to Running Program

CompilerEditor Virtual
Machine

Running
ProgramSource File

Class �les

Library �les




